Stima esercizio

*brssfn76
Ragazzi posto un es che non capisco molto:

1) Si vuole effettuare una verifica dell’affidabilita di un certo dispositivo elettronico prodotto in serie,
determinando la percentuale di pezzi usciti dalla produzione con difetti che ne compromettono il
corretto funzionamento, a partire da un campione di numerosita piuttosto elevata.
a) Quanti pezzi al minimo si dovrebbero esaminare per avere, al 99% di livello di fiducia, una
indeterminazione assoluta sulla stima pari all’1%?

So solo che un numero di campioni molto elevato....nulla sui parametri della popolazione percio per
i valori critici si usa t di student o z normale? E' un evento dicotomico?
poi cosa significa avere una indeterminazione assoluta sulla stima del 1%? è riferita a Xmedio del campione?

grazie

Risposte
motorhead
Si è un evento dicotomico e 'indeterminazione assoluta sulla stima' credo proprio sia l'errore complessivo di stima ($I$).
Fissato il livelllo di confidenza $1-alpha$ per determinare la numerosità campionaria tale che l'errore complessivo di stima per il parametro $p$ è non superiore a $I$ ($0 $2lambdasqrt((\hat p(1-\hat p))/n) <=I $ cioè $n>=4lambda^2((\hat p(1-\hat p))/I^2)$

l'informazione su $\hat p$ , non avendo fatto sondaggi pilota, può essere presa dall'ipotesi cautelativa $\hat p=0.5$

*brssfn76
GRAZIE!!!

motorhead
prego :wink:

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.