Matematica combinatoria
è da un po' di tempo che non bazzico esercizi di palline, tombole e bingo vari, perciò vi sarei grato se mi deste una mano, quanto meno nell'impostare il problema.
ho 12 numeri. in quanti modi ne posso prendere 6 tali che siano 3 pari e 3 dispari?
ponendo p=paro d=disparo io mi metterei a calcolare la somma dei modi in cui posso avere pppddd, ppdpdd, ppddpd, ppdddp, eccetera. ma c'è sicuramente un modo più semplice e veloce, per non dire raffinato, vero?
ho 12 numeri. in quanti modi ne posso prendere 6 tali che siano 3 pari e 3 dispari?
ponendo p=paro d=disparo io mi metterei a calcolare la somma dei modi in cui posso avere pppddd, ppdpdd, ppddpd, ppdddp, eccetera. ma c'è sicuramente un modo più semplice e veloce, per non dire raffinato, vero?
Risposte
Come sono questi 12 numeri?
Consecutivi?
Consecutivi?
Ciao, se sono 6 pari e 6 dispari e se non conta l'ordine li puoi prendere in 400 modi (in 20 modi puoi prendere i 3 dispari sui 6 e così per i pari da cui $20*20=400$).
Ciao, forse volevi sapere anche come viene fuori il 20. Devi fare il coefficiente binomiale 6 sopra 3 (quindi devi studiare le combinazioni ed i coefficienti binomiali).
"Steven":
Come sono questi 12 numeri?
scusa, i numeri sono 6 pari e 6 dispari.
"luluemicia":
Devi fare il coefficiente binomiale 6 sopra 3.
lo pensavo anch'io ma... non ci si perde qualcosa? non è troppo facile così?
lo pensavo anch'io ma... non ci si perde qualcosa? non è troppo facile così?
Guarda, immagina di separare i numeri, 6 pari e 6 dispari.
In quanti modi possiamo scegliere 3 numeri pari tra i 6?
Ovviamente
$((6),(3))$
Lo stesso per i dispari
$((6),(3))$
Quindi, se vuoi "intrecciare" in modo che ottieni tutte le possibili combinazioni, devi moltiplicare i due valori, ottenendo il risultato che ti hanno già detto.
Ciao