Massima correlazione

shaducci
Salve a tutti. Mi trovo davanti un esercizio che mi chiede:

Senza fare calcoli e motivando la risposta, si dica se le seguenti affermazioni relative alla tabella di cui sopra
sono vere o false:
1) la varianza delle medie condizionate di S da C non può essere nulla;
2) la media delle varianze condizionate di S da C è sicuramente nul

Io conosco le medie condizionate e marginali quindi posso affermare che la prima è sicuramente falsa in quanto la varianza delle medie condizionate, ovvero la varianza spiegata, non può essere pari a 0, perchè altrimenti ci sarebbe indipendenza in media e le mie medie sono diverse.
Per quanto riguarda il secondo punto, ho qualche dubbio. La varianza residua uguale a 0 implica la massima correlazione. Come faccio a vedere da una tabella la massima correlazione senza far calcoli?

Federico

Risposte
shaducci
Nessuno mi risponde? :(

shaducci
up?

DajeForte
Vediamo se ricordo qualcosa di statistica.

Per il 2)

Hai 2 variabili S e C. Ti dice $E[V[S|C]]=0$. Questi implica $V[S|C]=0$ ovvero condizionatamente a $c$ la varianza di $S$ è nulla.

Quando una varianza è nulla? Quando la variabile è costante. Questo, in linguaggio statistico, dovrebbe voler dire che: preso un qualsiasi valore di $C$ $c$
la distribuzione di $S|C=c$ è costante (ovvero uguale ad un valore).Preso un altro $c$ deve accadere la stessa cosa (ma il valore che assume s può essere diverso).

Quindi ti direi che nella tabella devi avere che su ogni colonna o riga (a seconda di come hai messo S\C) corrispondente ai vari valori di C, S deve assumere un valore solo.

shaducci
Grazie mille!!!

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.