Distanza dal nucleo di un funzionale lineare e continuo
Calcolare distanze di punti da sottospazi è in generale un problema non banale, specie in spazi non uniformemente convessi. Propongo una lezioncina.
Lemma (Riesz). Siano \( X\) uno spazio normato e \( G \subset X\) un suo sottospazio lineare chiuso proprio. Allora per ogni \( \epsilon \in (0,1)\) esiste un \(x_\epsilon \notin G\) con \( \| x_\epsilon \| = 1 \) e \( d(x_\epsilon ,G) \ge 1 - \epsilon \).
Con il precedente si può dimostrare il seguente
Teorema. Siano \(X\) uno spazio normato, \( x^* \in X^* \setminus \{ 0 \} \) e \( L= \ker x^* \). Allora \[ d(x,L) = \frac{|x^* (x)|}{\|x^*\|} \quad \forall \, x \in X. \]
Dimostrazione. Esercizio bonus (usare il Lemma di Riesz - io non lo ricordavo e c'ho perso la vita).
Corollario 1. Siano \( x^* \in X^* \setminus \{ 0 \} \), \( c \in \mathbb{R}\) e \( A = \{ x \in X \, : \, x^* (x)=c \} \) (iperpiano chiuso). Allora \[ d(x,A) = \frac{|x^* (x) - c|}{\|x^*\|} \quad \forall \, x \in X. \]
Corollario 2. Sia \(L\) un sottospazio lineare \(1\)-dimensionale di uno spazio di Hilbert \( \mathcal{H} \). Se \( a \in L \ \setminus \{0\}\) allora \[ d(x,L^{\bot}) = \frac{|\langle x , a \rangle |}{\|x^*\|} \quad \forall \, x \in X. \]
_________________________________________
Esercizio 1. Sia \( \{ a_n \}_{n \in \mathbb{N}} \subseteq \mathbb{R} \setminus \{0\} \) una successione tale che \( \lim_{n} |a_{n+1}/a_n|=l \ne 1\). Per ogni \( n \in \mathbb{N} \) sia \[ L_n = \left\{ \{ x_n \}_{n \in \mathbb{N}} \in \ell^2 \, : \, \sum_{k=1}^n a_k x_k = 0 \right\}. \]Calcolare \( d(e_n , L_n ) \) e \( \lim_n d(e_n, L_n )\).
Esercizio 2. Sia \[ H= \left\{ \{ x_n \}_{n \in \mathbb{N}} \in \ell^1 \, : \, \sum_{n=1}^\infty \frac{x_n}{n} = 1 \right\}. \]Mostrare che \(H\) possiede un unico elemento di norma minima e calcolarlo.
Lemma (Riesz). Siano \( X\) uno spazio normato e \( G \subset X\) un suo sottospazio lineare chiuso proprio. Allora per ogni \( \epsilon \in (0,1)\) esiste un \(x_\epsilon \notin G\) con \( \| x_\epsilon \| = 1 \) e \( d(x_\epsilon ,G) \ge 1 - \epsilon \).
Con il precedente si può dimostrare il seguente
Teorema. Siano \(X\) uno spazio normato, \( x^* \in X^* \setminus \{ 0 \} \) e \( L= \ker x^* \). Allora \[ d(x,L) = \frac{|x^* (x)|}{\|x^*\|} \quad \forall \, x \in X. \]
Dimostrazione. Esercizio bonus (usare il Lemma di Riesz - io non lo ricordavo e c'ho perso la vita).
Corollario 1. Siano \( x^* \in X^* \setminus \{ 0 \} \), \( c \in \mathbb{R}\) e \( A = \{ x \in X \, : \, x^* (x)=c \} \) (iperpiano chiuso). Allora \[ d(x,A) = \frac{|x^* (x) - c|}{\|x^*\|} \quad \forall \, x \in X. \]
Corollario 2. Sia \(L\) un sottospazio lineare \(1\)-dimensionale di uno spazio di Hilbert \( \mathcal{H} \). Se \( a \in L \ \setminus \{0\}\) allora \[ d(x,L^{\bot}) = \frac{|\langle x , a \rangle |}{\|x^*\|} \quad \forall \, x \in X. \]
_________________________________________
Esercizio 1. Sia \( \{ a_n \}_{n \in \mathbb{N}} \subseteq \mathbb{R} \setminus \{0\} \) una successione tale che \( \lim_{n} |a_{n+1}/a_n|=l \ne 1\). Per ogni \( n \in \mathbb{N} \) sia \[ L_n = \left\{ \{ x_n \}_{n \in \mathbb{N}} \in \ell^2 \, : \, \sum_{k=1}^n a_k x_k = 0 \right\}. \]Calcolare \( d(e_n , L_n ) \) e \( \lim_n d(e_n, L_n )\).
Esercizio 2. Sia \[ H= \left\{ \{ x_n \}_{n \in \mathbb{N}} \in \ell^1 \, : \, \sum_{n=1}^\infty \frac{x_n}{n} = 1 \right\}. \]Mostrare che \(H\) possiede un unico elemento di norma minima e calcolarlo.
Risposte
Mi sono messo dietro solo a fare la dimostrazione bonus (ma non ho usato Riesz, credo) perché la sessione chiama.
[ot]Languisco sempre per la mancanza di una conferma sull'esercizio sulla funzione integrale
[/ot]
[ot]Languisco sempre per la mancanza di una conferma sull'esercizio sulla funzione integrale

"Delirium":
Lemma (Riesz). Siano \( X\) uno spazio normato e \( G \subset X\) un suo sottospazio lineare chiuso proprio. Allora per ogni \( \epsilon \in (0,1)\) esiste un \(x_\epsilon \notin G\) con \( \| x_\epsilon \| = 1 \) e \( d(x_\epsilon ,G) \ge 1 - \epsilon \).
Dal modo in cui hai enunciato il teorema mi viene spontanea una domanda, non è sempre possibile trovare $x$ tale che $||x||=1$ e $d(x,G)=1$?
Mi è appena venuto in mente che forse non si può perché lo spazio non è necessariamente completo, ci sta?
In uno spazio di Banach si può sempre trovare un punto come dicevo prima vero?
Visto che ci sono posso chiederti un esempio (se c'è) in cui un punto del genere non si può trovare?
"otta96":
[...]
Dal modo in cui hai enunciato il teorema mi viene spontanea una domanda, non è sempre possibile trovare $x$ tale che $||x||=1$ e $d(x,G)=1$?
Mi è appena venuto in mente che forse non si può perché lo spazio non è necessariamente completo, ci sta?
In uno spazio di Banach si può sempre trovare un punto come dicevo prima vero?
Visto che ci sono posso chiederti un esempio (se c'è) in cui un punto del genere non si può trovare?
Stavo leggendo un libro in cui sono riportate alcune limitazioni al lemma in esame. In particolare: se \(X\) è uno spazio di Banach, allora \(X\) è riflessivo sse per ogni \( G \subseteq X \) sottospazio lineare chiuso e proprio esiste \(x \in X\) con \( \|x\|_X = 1\) e \( d(x,G) \ge 1 \).
Poi come esercizio aggiuntivo (credo si possa fare con la "tecnica" dell'OP) puoi mostrare che se \[ X = \{ f \in C([0,1]) \ : \ f(0)=0\} \] e \[ Y =\left\{ f \in X \ : \ \int_0^1 f(t) \, dt = 0 \right\} \]allora non esiste alcun \( x \in X \) di norma unitaria con \(d(x,Y) \ge 1\). Capisci quindi quanto è sottile il lemma di Riesz!
@Bremen: è corretto! Poi vado all'integrale.
Credo che la questione risieda tutto nel fatto che negli spazi riflessivi i funzionali hanno massimo sulla sfera unitaria mentre in quelli non riflessivi no.
Sicuramente in uno spazio riflessivo riesci a far vedere che esiste un $x$ di norma unitaria tale che \( d(x,G) \ge 1 \).
Un esempio dove non sia possibile va cercato a naso in \(\ell^{\infty} \) ...
EDIT: sempre in ritardo
Sicuramente in uno spazio riflessivo riesci a far vedere che esiste un $x$ di norma unitaria tale che \( d(x,G) \ge 1 \).
Un esempio dove non sia possibile va cercato a naso in \(\ell^{\infty} \) ...
EDIT: sempre in ritardo

"Bremen000":
Credo che la questione risieda tutto nel fatto che negli spazi riflessivi i funzionali hanno massimo sulla sfera unitaria mentre in quelli non riflessivi no. [...]
Esatto, è il teorema di James

"Bremen000":
Sicuramente in uno spazio riflessivo riesci a far vedere che esiste un $x$ di norma unitaria tale che \( d(x,G) \ge 1 \).
Un esempio dove non sia possibile va cercato a naso in \(\ell^{\infty} \) ...
Ma anche in $l^1$ volendo?
Be' si anche \( \ell^1 \) è non riflessivo. Dicevo \( \ell^{\infty} \) proprio a naso, lì di solito va tutto storto

Stavo pensando a come derivare il Corollario 1 dal Teorema. Non posso sicuramente definire un nuovo funzionale \(y^* := x^*-c \) e considerarne il nucleo, perché \( y^* \) non sarebbe un elemento di \( X^* \). Di fatto però nella dimostrazione del Teorema non uso mai l'omogeneità (che è quel che manca a \( y^* \) ), quindi la si può ripetere passo passo:
Corollario 2:
Corollario 2: