Calcolo Tasso di Interesse

wildsharkg
Buongiorno a tutti!
Spero di aver individuato la sezione giusta per postare la mia richiesta!
Questo è il mio quesito:
vorrei esplicitare la "i" in questa formula (per poi riprodurla su excel):

$ C=sum_(k = 1) r/(1+i)^(k/12) $

Sono riuscito abbastanza agevolmente a ricreare in excel i passaggi per il calcolo di "C".
Adesso sono in difficoltà nell'esplicitare la formula avendo come incognita la "i".

Si tratta essenzialmente di un finanziamento avente:
C = Capitale iniziale
r = Rata pagata periodicamente (fissa)
i = interesse applicato
k = numero di rate (mensili in questo caso)

Spero di essere stato abbastanza chiaro e che qualcuno possa darmi un supporto.
Grazie a tutti!

Risposte
wildsharkg
Non essendo riuscito a inserirlo nella formula, aggiungo che "k" varia da 1 a 120.

anonymous_c5d2a1
Non esiste una formula per calcolare il tasso $i$ detto anche $T.I.R.$. Per ottenere un valore approssimato bisogna utilizzare il metodo delle tangenti di Newton.

wildsharkg
Grazie per la dritta!
Ho provato a fare qualche ricerca ed ho trovato una formula excel che dovrebbe fare al caso mio:
TIR.X
Dite che questa formula applica il metodo delle tangenti di Newton?

anonymous_c5d2a1
Non lo sinceramente quale metodo utilizzi, ma ti dico con certezza che non esiste una formula.

wildsharkg
Queste sono le indicazioni di office online sulla funzione TIR.X :

- La funzione TIR.X è strettamente correlata a VAN.X, la funzione che calcola il valore attuale netto. Il tasso di rendimento calcolato da TIR.X è il tasso di interesse corrispondente a VAN.X = 0.
- In Excel viene utilizzata una tecnica iterativa per il calcolo di TIR.X. Utilizzando un tasso variabile e iniziando con ipotesi, TIR.X ripete il calcolo finché il risultato non raggiunge una precisione dello 0,000001%. Se TIR.X non riesce a trovare un risultato valido dopo 100 tentativi, verrà restituito il valore di errore #NUM!.

http://office.microsoft.com/it-it/excel-help/tir-x-funzione-tir-x-HP010343042.aspx

Sembra che anche questa formula vada per tentativi, quindi potrebbe corrispondere al metodo delle Tangenti!

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.