[Elettrotecnica] Esercizi andamento tensio nel dominio del tempo

tibbo93
Salve a tutti, mi sto preparando per l'esame di elettrotecnica ma purtroppo mentre faccio gli esercizi mi trovo di fronte alcuni dubbi che mi bloccano. Di seguito ho allegato 2 testi di esercizi tipici dell'esame in cui mi sorgono i seguenti dubbi:
nel primo esercizio (quello con il condensatore in alto per intenderci) so che per \(\displaystyle t<0 \) il condensatore si comporta come un circuito aperto e l'induttore come un corto circuito, quindi posso sostituirli nel disegno del circuito, ora per \(\displaystyle t>=0 \) invece il valore del generatore è pari a \(\displaystyle 0 \), quindi si comporta come un circuito aperto, giusto? Da qui mi sorge il dubbio, come diventa il circuito e come deve essere risolto?
L'esercizio 2 è molto simile ma qui il problema mi sorge per \(\displaystyle t<0 \), il condensatore si comporta come un corto circuito, posso direttamente non considerare quel tratto del circuito nell'analisi?
L'analisi del circuito la effettuo tramite il metodo delle maglie e quello dei nodi.
Grazie mille in anticipo, spero di essere stato chiaro :D


Risposte
tibbo93
secondo esercizio:


RenzoDF
Sembrano dello stesso autore di quelli di filipp0,

viewtopic.php?f=38&t=162393

Lo conosci? ... seguite lo stesso corso? Quale ? Dove? :)

BTW Potresti farmi il favore inserire le immagini nella finestra del messaggio e non come allegato? ... aprire di continuo in diverse finestre non è molto comodo. Grazie.

RenzoDF
"tibbo93":
... nel primo esercizio... per \(\displaystyle t<0 \) il condensatore si comporta come un circuito aperto e l'induttore come un corto circuito, quindi posso sostituirli nel disegno del circuito,

Certo, e quindi puoi andare a determinare le condizioni iniziali, ovvero vC(0) e iL(0).

"tibbo93":
... ora per \(\displaystyle t>=0 \) invece il valore del generatore è pari a \(\displaystyle 0 \), quindi si comporta come un circuito aperto, giusto? Da qui mi sorge il dubbio, come diventa il circuito e come deve essere risolto?

Giusto, il circuito risulta "aperto" a sinistra, ed evolve grazie all'energia accumulata nel condensatore e nell'induttore.

"tibbo93":
...L'esercizio 2 è molto simile ma qui il problema mi sorge per \(\displaystyle t<0 \), il condensatore si comporta come un corto circuito,

No, si comporterà come prima, ovvero come un circuito aperto, non chiuso.

"tibbo93":
... posso direttamente non considerare quel tratto del circuito nell'analisi?

Per t < 0 si, per t > 0 no.

"tibbo93":
... L'analisi del circuito la effettuo tramite il metodo delle maglie e quello dei nodi.

Si, l'analisi la effettui con uno dei soliti metodi, chiaramente dovrai risolvere o via equazioni differenziali o via Laplace.

tibbo93
Grazie mille e scusami per le immagini, non sapevo come fare :lol: ora spero vada bene, comunque grazie mille della risposta così immediata. Si avevo visto quel post e mi era già stato da aiuto, ma poi sono sorti altri dubbi in merito, penso sia lo stesso a quanto pare, ma non conosco l'utente di persona, comunque corso di Ingegneria Informatica alla Sapienza.

"RenzoDF":
No, si comporterà come prima, ovvero come un circuito aperto, non chiuso.

Già, ho sbagliato a scrivere e non me ne sono accorto.

"RenzoDF":
Per t < 0 si, per t > 0 no.

Quindi se non ho capito male posso praticamente togliere la maglia di sinistra per \(\displaystyle t<0 \), ma poi come si comporta la rete a due porte? devo considerare come vincolo solo l'equazione della porta 2?

RenzoDF
"tibbo93":
... se non ho capito male posso praticamente togliere la maglia di sinistra per \(\displaystyle t<0 \), ma poi come si comporta la rete a due porte? devo considerare come vincolo solo l'equazione della porta 2?

Essendo la maglia sinistra aperta, tutta la corrente impressa dal GIC circolerà sulla maglia destra e quindi iL(0)=ig[nota]Scegliendo per il verso di iL quello concorde con la corrente entrante alla seconda porta del tripolo.[/nota], ma la maglia sinistra dovrai comunque considerarla al fine di determinare la tensione ai morsetti del condensatore vC(0) che chiaramente risulterà pari a quella ai morsetti del GIC.

filipp01
Confermo, seguiamo lo stesso corso. Potremmo anche confrontarci direttamente @tibbo93

tibbo93
Ho provato a svolgere il primo esercizio seguendo le indicazioni e questo è quello che mi è venuto fuori, spero sia giusto.
Ora provo anche il secondo.


RenzoDF
Ok per i valori iniziali per t < 0, mentre per t > 0 avrei evitato di scrivere tutte quelle relazioni, andando ad esplicitare il tripolo come segue

[fcd="fig.1"][FIDOCAD]
FJC A 0.3
FJC B 0.3
EV 90 25 100 35 0
MC 75 30 1 0 ey_libraries.pascap0
MC 50 50 0 0 ihram.res
MC 95 50 0 0 ihram.res
LI 70 60 65 65 0
LI 65 65 70 70 0
LI 70 70 75 65 0
LI 75 65 70 60 0
LI 70 60 70 70 0
LI 90 60 85 65 0
LI 85 65 90 70 0
LI 90 70 95 65 0
LI 95 65 90 60 0
LI 90 60 90 70 0
LI 80 30 120 30 0
LI 120 30 120 80 0
MC 120 80 1 0 ihram.res
MC 80 115 3 0 ihram.indutt
EV 75 80 85 90 0
LI 65 30 40 30 0
LI 40 30 40 50 0
LI 40 50 50 50 0
LI 65 50 70 50 0
LI 70 50 70 60 0
LI 70 70 70 75 0
LI 70 75 90 75 0
LI 90 75 90 70 0
LI 90 60 90 50 0
LI 90 50 95 50 0
LI 110 50 120 50 0
LI 80 75 80 95 0
LI 80 115 80 120 0
LI 80 120 120 120 0
LI 120 120 120 95 0
TY 65 69 4 3 0 0 0 * +
TY 92 69 4 3 0 0 0 * +
LI 45 55 55 55 0
FCJ 2 0 3 1 0 0
TY 45 55 4 3 0 0 0 * x
LI 110 55 100 55 0
FCJ 2 0 3 1 0 0
TY 105 55 4 3 0 0 0 * y
TY 82 90 4 3 0 0 0 * +
TY 85 23 4 3 0 0 0 * +
TY 90 17 4 3 0 0 0 * 2/s
TY 69 17 4 3 0 0 0 * 1/s
MC 102 120 0 0 ey_libraries.refpnt0
TY 128 73 4 3 0 0 0 * +
TY 127 84 4 3 0 0 0 * vR
TY 58 62 4 3 0 0 0 * y
TY 98 63 4 3 0 0 0 * x
LI 90 102 90 112 0
FCJ 2 0 3 1 0 0
TY 93 103 4 3 0 0 0 * x+y
TY 73 102 4 3 0 0 0 * s
TY 113 84 4 3 0 0 0 * 1
TY 101 42 4 3 0 0 0 * 1
TY 56 42 4 3 0 0 0 * 1
TY 87 82 4 3 0 0 0 * 3[/fcd]
rete dalla quale, direttamente in forma numerica, avrei risolto con una KCL (già esplicitata nello schema) e le seguenti due KVL
\begin{cases} 2/s-x/s-x+y-x+y=0 \\ +3-(x+y)(s+1)-y+x=0 \end{cases}
dalle quali,

$$ V_{R}(s)=-R(x+y)=-\frac{12s+7}{4s^2+5s+2} $$

e quindi, se non erro,

$$v_R(t)=- e^{-\frac{5}{8} t} \left [3 \ \cos \left ( \frac{\sqrt 7 } {8}t \right)-\frac{1}{\sqrt 7}\ \sin \left (\frac{\sqrt 7 } {8}t\right) \right ]$$

Ovviamente posso aver sbagliato io.

tibbo93
effettivamente ricontrollando i calcoli mi sono accorto di aver sbagliato, ma alla fine mi viene comunque lo stesso risultato tuo :D
alla fine il procedimento è lo stesso solo che io ho considerato i vincoli della porta )come ha fatto il professore in un esercizio) invece che esplicitarla come hai fatto tu, ho allungato un po il brodo diciamo... ora provo a fare il secondo e anche altri sperando di non avere problemi.
Grazie mille dell'aiuto mi hai tolto numerosi dubbi.

tibbo93
ho provato a fare il secondo esercizio e da quello che ho capito dovrebbe essere così, ma non sono sicuro purtroppo...

per \(\displaystyle t<0 \) il circuito dovrebbe essere il seguente se non sbaglio:



da qui mi sono ricavato(sempre utilizzando le stesse relazioni del tripolo dell'esercizio precedente):
\[ V_{R}(t)=-RI={-1} V\] \[ V_{x}=2V\]\[ V_{2}=1V\]
quindi le condizioni iniziali del condensatore e dell'induttore sono:
\[ I_{L}(0)=I=1A\]\[ V_{C}(0)=-V_{R}(0)+V_{2}(0)=3V\]
non sono sicuro di aver considerato il tripolo in modo esatto e di aver ricavato le grandezze nel modo giusto, quindi la parte per t>0 ancora non l'ho fatta...

RenzoDF
Non circolando corrente nell'anello sinistro ed essendo pari a zero la transimpedenza $Z_{12}$, supponendo che il verso scelto per la $V_C$ abbia il positivo sul morsetto superiore del condensatore avremo che detta tensione sarà uguale all'opposto di quella sul GIC, ovvero $V_C=-V_X=-2V$.

filipp01
tibbo potresti pubblicare la risoluzione dei poli che non mi viene il risultato giusto?

fino a qui tutto ok
$(−12s+7)/(4s^2+5s+2)$

tibbo93
"RenzoDF":
Non circolando corrente nell'anello sinistro ed essendo pari a zero la transimpedenza Z12, supponendo che il verso scelto per la VC abbia il positivo sul morsetto superiore del condensatore avremo che detta tensione sarà uguale all'opposto di quella sul GIC, ovvero VC=−VX=−2V.


Ok fin qui ci siamo, invece supponendo che il verso della VC abbia il verso opposto (positivo su morsetto inferiore) il valore di tale tensione dovrebbe essere uguale a 2V. Ma se invece di considerare la maglia più piccola a sinistra io considerassi la maglia più esterna e applicassi la KVL a tale maglia (che è quello che ho fatto nel mio esercizio) ? E' possibile fare questa cosa o è sbagliata?

Per filipp0 il numeratore è \(\displaystyle -12s-7 \)

RenzoDF
"tibbo93":
... Ma se invece di considerare la maglia più piccola a sinistra io considerassi la maglia più esterna e applicassi la KVL a tale maglia (che è quello che ho fatto nel mio esercizio) ? E' possibile fare questa cosa o è sbagliata?

Certo che si può fare, ma non devi poi sbagliare il calcolo numerico. :wink:

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.