Una proprietà della derivata covariante e delle parentesi di Lie
Sia $M$ una varietà Riemanniana con connessione di Levi-Civita \( \nabla \) e sia $S$ una varietà differenziabile con $ \varphi : S \to M $ un'immersione $C^{\infty}$. Sia
$$ D : TS \times \{ \text{campi vettoriali lungo } \varphi \} \to TM $$ t.c.
1. $ (v,X) \mapsto D_v(X) \in T_{\varphi(\pi(v))} M $
2. $D_{\alpha v_1 + \beta v_2}(X) = \alpha D_{v_1}(X) + \beta D_{v_2}(X)$
3. $D_v( X+Y) = D_v(X)+D_v(Y)$ and $ D_v(fX) = f(\pi(v))D_v(X) + v(f)X_{\pi(v)}$
4. \( D_v (\varphi^* (X) ) = \nabla_{d\varphi_{\pi(v)}(v)} (X) \) per ogni $X$ campo vettoriale su $M$.
dove $ \pi : TM \to M$ è la proiezione naturale $ v \in T_pM \mapsto p $ e \( \varphi^*(X) = X \circ \varphi \)
Voglio dimostrare che
$$ D_X( d\varphi(Y)) - D_Y( d\varphi(X)) = d\varphi ( [X,Y] )$$
Essendo $d\varphi(X)$ e $d \varphi(Y)$ campi vettoriali lungo $\varphi$ posso scrivere
$$ d\varphi(X) = U^i \partial_i \quad \quad d\varphi(Y) = V^j \partial_j $$
dove \( \partial_i \bigr |_p = \frac{\partial}{\partial x^i} \bigr |_{\varphi(p)} \) per ogni $p \in S$ e \( \{ x^1, \dots, x^n \} \) sono coordinate vicino a $\varphi(p)$ su $M$. Per linearità e regola di Leibniz il LHS diventa
$$ V^jD_X(\partial_j) + X(V^j) \partial_j - U^iD_Y(\partial_i) - Y(U^i) \partial_i =$$
$$ = V^j U^i \nabla_{\frac{\partial}{\partial x^i}} (\frac{\partial}{\partial x^j}) + X(V^j) \partial_j - V^j U^i \nabla_{\frac{\partial}{\partial x^j}} (\frac{\partial}{\partial x^i})- Y(U^i) \partial_i$$
$$= X(V^j) \partial_j - Y(U^i) \partial_i$$
Il RHS è, per ogni $p \in S$ e \( f \in C^{\infty}_{\varphi(p)}M \)
$$(d\varphi ( [X,Y] ))_p (f) = d\varphi_p ( [X,Y]_p) (f) = [X,Y]_p (f \circ \varphi) $$
$$= X_p(Y(f \circ \varphi)) - Y_p(X(f \circ \varphi)) = X_p(d\varphi(Y)(f)) - Y_p(d\varphi(X)(f))$$
$$= X_p( V^j \frac{\partial f}{\partial x^j} \bigr |_{\varphi( ) } ) - Y_p( U^i \frac{\partial f}{\partial x^i} \bigr |_{\varphi( ) } ) $$ $$= X_p(V^j)\frac{\partial f}{\partial x^j} \bigr |_{\varphi(p) } - Y_p(U^i)\frac{\partial f}{\partial x^i} \bigr |_{\varphi(p) } + V_p^jX_p ( \frac{\partial f}{\partial x^j} \bigr |_{\varphi( ) }) - U_p^iY_p ( \frac{\partial f}{\partial x^i} \bigr |_{\varphi( ) }) $$
$$= LHS_p(f) + V_p^jX_p ( \frac{\partial f}{\partial x^j} \bigr |_{\varphi( ) }) - U_p^iY_p ( \frac{\partial f}{\partial x^i} \bigr |_{\varphi( ) }) $$
Mostriamo che l'ultimo pezzo è $0$:
$$V_p^jX_p ( \frac{\partial f}{\partial x^j} \bigr |_{\varphi( ) }) - U_p^iY_p ( \frac{\partial f}{\partial x^i} \bigr |_{\varphi( ) }) = V_p^j d\varphi_p (X_p) (\frac{\partial f}{\partial x^j}) -U_p^i d\varphi_p (Y_p) (\frac{\partial f}{\partial x^i}) = $$
$$= V_p^jU_p^i \frac{\partial}{\partial x^i} \bigr |_p (\frac{\partial f}{\partial x^j}) -U_p^iV_p^j \frac{\partial}{\partial x^j} \bigr |_p (\frac{\partial f}{\partial x^i}) =U_p^iV_p^j ( \frac{\partial}{\partial x^j} \bigr |_p (\frac{\partial f}{\partial x^i})- \frac{\partial}{\partial x^i} \bigr |_p (\frac{\partial f}{\partial x^j}) )=0 $$
$$ D : TS \times \{ \text{campi vettoriali lungo } \varphi \} \to TM $$ t.c.
1. $ (v,X) \mapsto D_v(X) \in T_{\varphi(\pi(v))} M $
2. $D_{\alpha v_1 + \beta v_2}(X) = \alpha D_{v_1}(X) + \beta D_{v_2}(X)$
3. $D_v( X+Y) = D_v(X)+D_v(Y)$ and $ D_v(fX) = f(\pi(v))D_v(X) + v(f)X_{\pi(v)}$
4. \( D_v (\varphi^* (X) ) = \nabla_{d\varphi_{\pi(v)}(v)} (X) \) per ogni $X$ campo vettoriale su $M$.
dove $ \pi : TM \to M$ è la proiezione naturale $ v \in T_pM \mapsto p $ e \( \varphi^*(X) = X \circ \varphi \)
Voglio dimostrare che
$$ D_X( d\varphi(Y)) - D_Y( d\varphi(X)) = d\varphi ( [X,Y] )$$
Essendo $d\varphi(X)$ e $d \varphi(Y)$ campi vettoriali lungo $\varphi$ posso scrivere
$$ d\varphi(X) = U^i \partial_i \quad \quad d\varphi(Y) = V^j \partial_j $$
dove \( \partial_i \bigr |_p = \frac{\partial}{\partial x^i} \bigr |_{\varphi(p)} \) per ogni $p \in S$ e \( \{ x^1, \dots, x^n \} \) sono coordinate vicino a $\varphi(p)$ su $M$. Per linearità e regola di Leibniz il LHS diventa
$$ V^jD_X(\partial_j) + X(V^j) \partial_j - U^iD_Y(\partial_i) - Y(U^i) \partial_i =$$
$$ = V^j U^i \nabla_{\frac{\partial}{\partial x^i}} (\frac{\partial}{\partial x^j}) + X(V^j) \partial_j - V^j U^i \nabla_{\frac{\partial}{\partial x^j}} (\frac{\partial}{\partial x^i})- Y(U^i) \partial_i$$
$$= X(V^j) \partial_j - Y(U^i) \partial_i$$
Il RHS è, per ogni $p \in S$ e \( f \in C^{\infty}_{\varphi(p)}M \)
$$(d\varphi ( [X,Y] ))_p (f) = d\varphi_p ( [X,Y]_p) (f) = [X,Y]_p (f \circ \varphi) $$
$$= X_p(Y(f \circ \varphi)) - Y_p(X(f \circ \varphi)) = X_p(d\varphi(Y)(f)) - Y_p(d\varphi(X)(f))$$
$$= X_p( V^j \frac{\partial f}{\partial x^j} \bigr |_{\varphi( ) } ) - Y_p( U^i \frac{\partial f}{\partial x^i} \bigr |_{\varphi( ) } ) $$ $$= X_p(V^j)\frac{\partial f}{\partial x^j} \bigr |_{\varphi(p) } - Y_p(U^i)\frac{\partial f}{\partial x^i} \bigr |_{\varphi(p) } + V_p^jX_p ( \frac{\partial f}{\partial x^j} \bigr |_{\varphi( ) }) - U_p^iY_p ( \frac{\partial f}{\partial x^i} \bigr |_{\varphi( ) }) $$
$$= LHS_p(f) + V_p^jX_p ( \frac{\partial f}{\partial x^j} \bigr |_{\varphi( ) }) - U_p^iY_p ( \frac{\partial f}{\partial x^i} \bigr |_{\varphi( ) }) $$
Mostriamo che l'ultimo pezzo è $0$:
$$V_p^jX_p ( \frac{\partial f}{\partial x^j} \bigr |_{\varphi( ) }) - U_p^iY_p ( \frac{\partial f}{\partial x^i} \bigr |_{\varphi( ) }) = V_p^j d\varphi_p (X_p) (\frac{\partial f}{\partial x^j}) -U_p^i d\varphi_p (Y_p) (\frac{\partial f}{\partial x^i}) = $$
$$= V_p^jU_p^i \frac{\partial}{\partial x^i} \bigr |_p (\frac{\partial f}{\partial x^j}) -U_p^iV_p^j \frac{\partial}{\partial x^j} \bigr |_p (\frac{\partial f}{\partial x^i}) =U_p^iV_p^j ( \frac{\partial}{\partial x^j} \bigr |_p (\frac{\partial f}{\partial x^i})- \frac{\partial}{\partial x^i} \bigr |_p (\frac{\partial f}{\partial x^j}) )=0 $$