Proiezione Lineare in P(V)
Ciao a tutti, ho problemi a capire in base a cosa, la proiezione lineare è una biiezione. In particolare sia $L$ sottospazio di dimensione r in $\mathbb{P}(V)$ e sia $M$ sottospazio di dimensione n-r-1 (con M ed L disgiunti, si ponga $\pi:\mathbb{P}(V)-L \rightarrow M$ definita come $\pi(Q)=
\capM$, preso $M'$ sottospazio proiettivo di dimensione uguale a quella di M tale che $M'\capL$ sia vuoto, allora $\pi$ ristretta a $M'$ è una proiettività.
Quello che non capisco dai miei appunti è la dimostrazione della sua biunivocità (sembra usare il fatto che $= $, cosa che non capisco...)
Qualcuno conosce una dimostrazione semplice di questo fatto?
Risposte
CIa0: io ragionerei utilizzando un sistema di riferimento proiettivo opportuno, e farei qualche calcolo (è l'unico modo in cui riesco a capire le proiezioni da un punto nello spazio proiettivo...)
In teoria ho risolto, la dimostrazione era davvero involuta e ci ho messo giorni a capirla e l'esame l'ho dato ormai.
Però tu diresti ad esempio che posso supporre che in qualche riferimento si abbia $L$ descritto da $x_{0}=x_{1}=...=x_{r-1}=0$, e $M$ sa $x_{r}=...=x_{n}=0$ o qualcosa del genere, e fare i conti così?
Però tu diresti ad esempio che posso supporre che in qualche riferimento si abbia $L$ descritto da $x_{0}=x_{1}=...=x_{r-1}=0$, e $M$ sa $x_{r}=...=x_{n}=0$ o qualcosa del genere, e fare i conti così?
Sì, esatto; i calcoli mi sembrano abbastanza facili da svolgere, in questa maniera.
Allora l'ho già dimostrato perché questa richiesta la aveva assegnata come esercizio subito dopo e sì, i calcoli sono molto semplici. Non pensavo fosse già di suo una dimostrazione, grazie mille.