Intersezione numerabile di compatti

anto_zoolander
Ciao!

devo dimostrare la seguente cosa
sia $(X,T)$ uno spazio topologio e sia ${K_n}_(n in NN)$ una famiglia decrescente di compatti chiusi, allora $bigcap_(n in NN)K_n ne emptyset$

io lo dimostrerei così; se per assurdo fosse $bigcap_(n in NN)K_n=emptyset$ allora $bigcup_(n in NN)K_n^c=X$ e quindi

$bigcup_(n in NN)(K_1capK_n^c)=K_1capbigcup_(n in NN)K_n^c=K_1capX=K_1$

quindi essendo $K_n^c$ aperto in $X$ si ottiene che ${K_1capK_n^c}_(n in NN)$ è un ricoprimento aperto di $K_1$.
Per la compattezza di $K_1$ esistono $n_1,...,n_k$ per cui

$K_1=bigcup_(i=1)^(k)(K_1capK_(n_i)^(c))$

da questo si ottiene che $K_1subsetbigcup_(i=1)^(k)K_(n_i)^c=(bigcap_(i=1)^(k)K_(n_i))^c$ ma allo stesso tempo essendo $K_(n_i) subsetK_1$ per ogni $i=1,...,k$ si ha che $bigcap_(i=1)^(k)K_(n_i)subsetK_1$ il che è assurdo.

Come la vedete la dimostrazione? Inoltre indebolirei anche l'ipotesi che debbano essere tutti compatti e assumerei che soltanto $K_1$ sia compatto.

Risposte
vict85
Hai dimenticato di specificare che \(K_n\) deve essere non vuoto per ogni \(n\). È un aspetto importante perché quell'unione è l'unione di una famiglia crescente di aperti. Quindi la loro unione coincide con il più grande di tutti. Pertanto è l'essere non nullo che stai contraddicendo.

La famiglia deve essere di chiusi per avere come limite un chiuso, ed usi la loro chiusura quando costruisci il ricoprimento. Assumere che siano compatti è ridondante in quanto un chiuso in un compatto è esso stesso compatto. Pertanto non stai indebolendo le ipotesi rimovendo la parola compatto dal testo.

anto_zoolander
Ciao vict :-D

"vict85":
Hai dimenticato di specificare che \( K_n \) deve essere non vuoto per ogni \( n \). È un aspetto importante perché quell'unione è l'unione di una famiglia crescente di aperti. Quindi la loro unione coincide con il più grande di tutti. Pertanto è l'essere non nullo che stai contraddicendo.

Hai ragione ho sbagliato a non specificarlo

"vict85":
La famiglia deve essere di chiusi per avere come limite un chiuso, ed usi la loro chiusura quando costruisci il ricoprimento. Assumere che siano compatti è ridondante in quanto un chiuso in un compatto è esso stesso compatto. Pertanto non stai indebolendo le ipotesi rimovendo la parola compatto dal testo.

Si fondamentalmente sto solo togliendo ciò che si otterrebbe lo stesso; non so perché il testo lo specificasse

Per il resto ti sembra corretta?

otta96
A parte le (giuste) precisazioni che ha fatto vict85 la dimostrazione va bene, non è nemmeno contorta come le tue dimostrazioni solite!

anto_zoolander
@otta
Avevo scritto un macello e ho tolto il superfluo :lol:

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.