Domanda di teoria: linearmente dipendente

indovina
C'è un proposizione sul libro che dice:


Se un sistema di vettori contiene il vettore nullo, esso è linearmente dipendente.

Quindi se c'è un sistema di vettori del tipo $(a_0,a_1,...............,a_n)$ e vedo che è $(0,a,b,c............,z)$ e c'è quel vettore nullo $0$

posso affermare che è linearmente dipendente?

Risposte
Steven11
Cioè stai domandando se la frase del libro è vera? Certamente lo è.

Non sono sicuro di comprendere bene questo:
Quindi se c'è un sistema di vettori del tipo $(a_0,a_1,...............,a_n)$ e vedo che è $(0,a,b,c............,z)$ e c'è quel vettore nullo $0$

indovina
Ciao Steven!
Io volevo 'inventare' un esempio per vedere se avessi capito.
Cioè se vedrò in un sistema di vettori il vettore nullo, tipo negli esercizi che c'è $(0,0,0$ quello posso dire che è un sistema linearmente dipendente, giusto?
Io sto cercando degli esempi.
Grazie del link sergio, ora mi ci butto

Needhana
se$ L: (1 , 2 ,2 ) ( 0 , 1 ,2 ) ( 0 , 0 , 0) $ il sistema è linearmente dipendente perchè contiene il vettore nullo. E questo vale sempre. Quindi ovviamente lo elimini e il sistema di generatori sarà $ L: ( 1 , 2 , 2 ) ( 0 , 1 , 2) $ che è linearmente indipendente.

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.