Autovettori corrispondenti

calocalo22
Come da titolo come faccio a ricavare (nell'immagine in basso) gli autovalori corrispondenti, cioè le autosoluzioni del sistema??
[url]http://i62.tinypic.com/34t5zx1.jpg[/img]

Risposte
Mos1
intendi autovettori? perché gli autovalori sono dati..
per trovarti gli autovettori corrispondenti a $ lambda $ devi trovarti prima i corrispondenti autospazi, questi autovettori sono infiniti, ma sinteticamente dati dalle basi degli autospazi.
Se sai trovare autospazi e basi hai finito.

calocalo22
Si gli autovettori cioè non riesco a capire come trova i numeri tra parentesi dopo k,h,t...(...)

Mos1
a scusa non avevo visto l'intero testo.. :(

comunque se ho capito bene non ti è chiaro da dove vengono fuori gli autovettori.
Risolvi i sistemi lineari:
ad esempio
per $ lambda =1 $ hai
$ { ( y=z ),( y=0 ),( -2z=0):} $
mentre $ x $ è arbitrario quindi poni $ x=k $
l'insieme delle soluzioni del sistema è dato $ ( ( k ),( 0 ),( 0 ) ) $ e quindi da $ k( ( 1 ),( 0 ),( 0 ) ) $ con k reale
è questo che non capivi?

calocalo22
http://i60.tinypic.com/2l9tczk.jpg

grazie mille :) mentre questo sistema con lambda1 e lambda2=0 e lambda3=3 come diventa?

Mos1
vengono 2 sistemi diversi
tipo per $ lambda =0 $
il sitema diventa
$ { ( x_1+x_2+x_3=0 ),( x_1+x_2+x_3=0 ),( x_1+x_2+x_3=0 ):} $
per $ lambda =3 $ il sistema diventa
$ { ( -2x_1+x_2+x_3=0 ),( x_1-2x_2+x_3=0 ),( x_1+x_2-2x_3=0 ):} $

Mos1
comunque ho visto che nell'esercizio di prima hai trovato gli autovalori con il polinomio caratteristico, ricordati comunque che nelle matrici triangolari gli autovalori sono gli elementi sulla diagonale, senza che svolgi tutti i conti ;)

minomic
Ciao, gli esercizi andrebbero scritti e non solo postati sotto forma di immagine.

Comunque data la matrice $A$ e un suo autovalore \(\lambda^*\) si ha che l'autospazio corrispondente si trova risolvendo il sistema $$\left(A-\lambda^*I\right)v = 0$$ cioè trovando $$\text{Ker} \left[A-\lambda^*I\right]$$

calocalo22
Grazie :) troppo gentile

Seneca1
[xdom="Seneca"]Come scrive minomic ti faccio presente che è necessario trascrivere il testo degli esercizi sul forum. Inoltre è obbligatorio scrivere qualche proprio tentativo o qualche indicazione su cosa esattamente non ti è chiaro, oltre alla consegna.[/xdom]

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.