[Quiz] Limiti di velocità
Un'automobile parte da fermo, percorre un miglio in un minuto su una strada rettilinea e si ferma.
Se il limite di velocità è di 90 miglia all'ora, dimostrare che almeno in un istante della traversata l'accelerazione o la decelerazione della macchina è stata pari ad almeno 6.6 piedi/sec^2.
Cordialmente, Alex
Se il limite di velocità è di 90 miglia all'ora, dimostrare che almeno in un istante della traversata l'accelerazione o la decelerazione della macchina è stata pari ad almeno 6.6 piedi/sec^2.
Cordialmente, Alex
Risposte
Suppongo che la temperatura interna e esterna sia in fahrenheit...

Non lo specifica

Comunque tornando leggermente, ma solo leggermente, più seri, il problema si può risolvere facilmente osservando che la minima accelerazione (e decelerazione) richiesta è quella che si otterrebbe accelerando fino a raggiungere il limite massimo di velocità, mantenendo quel limite per un certo tempo, e poi decelerando in maniera simmetrica all'accelerazione precedente per fermarsi. Ogni altro moto con legge diversa presupporrebbe una accelerazione o decelerazione maggiori.
Rappresentando il moto su assi cartesiani con tempo in ascissa e velocità in ordinata, avremo un trapezio la cui altezza è la velocità massima, base maggiore è il tempo di un minuto, base minore incognita è il tempo in cui si procede alla massima velocità, e con l'area del trapezio suddetto pari alla distanza di un miglio.
Unica incognita quindi è il tempo rappresentato dalla base minore che si trova quindi facilmente.
Nota la base minore la accelerazione (e decelerazione) è data dalla velocità massima diviso la differenza tra le basi del trapezio diviso 2 che rappresenta il tempo necessario per raggiungere la massima velocità o per fermarsi a partire da quella velocità.
Facendo i conti, e le conversioni alle barbare unità anglosassoni usate dal problema, si trova il risultato.
Rappresentando il moto su assi cartesiani con tempo in ascissa e velocità in ordinata, avremo un trapezio la cui altezza è la velocità massima, base maggiore è il tempo di un minuto, base minore incognita è il tempo in cui si procede alla massima velocità, e con l'area del trapezio suddetto pari alla distanza di un miglio.
Unica incognita quindi è il tempo rappresentato dalla base minore che si trova quindi facilmente.
Nota la base minore la accelerazione (e decelerazione) è data dalla velocità massima diviso la differenza tra le basi del trapezio diviso 2 che rappresenta il tempo necessario per raggiungere la massima velocità o per fermarsi a partire da quella velocità.
Facendo i conti, e le conversioni alle barbare unità anglosassoni usate dal problema, si trova il risultato.
