Problema elettrostatica...
Ciao a tutti, sono uno studente di ingegneria ed ho difficoltà con questo problema di elettrostatica. Vi prego aiutatemi; vi riporto il testo del problema e l'immagine.
Una sfera conduttrice, di raggio r1= 0,004 metri, è circondata da due gusci sferici conduttori concentrici di raggio r2 = 0,02 metri e r3= 0,04 metri e spessore trascurabile.Il guscio sferico di raggio r2 è caricato con una carica di q2 =4000 nanoCoulomb. La sfera di raggio r1 e il guscio sferico di raggio r3 sono collegati mediante un sottile filo conduttore che passa per un foro nel guscio di raggio r2 ma non in contatto con esso. Calcolare la carica q1 indotta sulla sfera di raggio r1.
L'immagine qui sotto schematizza la situazione.
Una sfera conduttrice, di raggio r1= 0,004 metri, è circondata da due gusci sferici conduttori concentrici di raggio r2 = 0,02 metri e r3= 0,04 metri e spessore trascurabile.Il guscio sferico di raggio r2 è caricato con una carica di q2 =4000 nanoCoulomb. La sfera di raggio r1 e il guscio sferico di raggio r3 sono collegati mediante un sottile filo conduttore che passa per un foro nel guscio di raggio r2 ma non in contatto con esso. Calcolare la carica q1 indotta sulla sfera di raggio r1.
L'immagine qui sotto schematizza la situazione.

Risposte
Ciao! Benvenuto tra noi. Ho eliminato AIUTO dal titolo, qui per regolamento questi richiami per l'attenzione non sono ammessi. Inoltre, sempre da regolamento, dovresti dire cosa hai provato di fare e dove ti sei bloccato, per favore.
Grazie!
Grazie!
Che caratteristica hanno r3 ed r1??
Ok, vi spiego quale è il problema.
In realtà l'esercizio l'ho risolto tranquillamente ma i risultati non corrispondono e non può essere un errore di approssimazione perché la differenza è un bel pò.
Ecco il ragionamento che ho fatto.
Il guscio di raggio r2 porta alla redistribuzione della carica sulla sfera di raggio r1 e sul guscio di raggio r3 per INDUZIONE. Ora sapendo che il guscio di raggio r2 ha una carica q2, la somma della carica indotta sul conduttore di raggio r1 e sul guscio di raggio r3 è uguale a -q2...Correggetemi se sbaglio.
Dal momento che i conduttori r1 ed r3 sono collegati, avviene un trasferimento di carica tra la sferetta ed il guscio esterno, ossia tra r1 ed r3 (ho chiamato i conduttori rispettivamente r1, r2 ed r3 per comodità).
Passiamo alla parte pratica.
q1:q3 = r1:r3
Applico la proprietà del comporre:
(q1+q3):q3 = (r1+r3):r3 sapendo che q1+q3=-q2
-q2:q3 = (r1+r3):r3
Prodotto dei medi è uguale al prodotto degli estremi:
q3*(r1+r3) = -q2*r3
da cui ovviamente segue che:
q3 = (-q2*r3)/(r1+r3)
Quindi, sapendo che q1+q3=-q2, abbiamo che q1= -q2-q3
Mi esce -364 nC, mentre il risultato porta -444nC
In realtà l'esercizio l'ho risolto tranquillamente ma i risultati non corrispondono e non può essere un errore di approssimazione perché la differenza è un bel pò.
Ecco il ragionamento che ho fatto.
Il guscio di raggio r2 porta alla redistribuzione della carica sulla sfera di raggio r1 e sul guscio di raggio r3 per INDUZIONE. Ora sapendo che il guscio di raggio r2 ha una carica q2, la somma della carica indotta sul conduttore di raggio r1 e sul guscio di raggio r3 è uguale a -q2...Correggetemi se sbaglio.
Dal momento che i conduttori r1 ed r3 sono collegati, avviene un trasferimento di carica tra la sferetta ed il guscio esterno, ossia tra r1 ed r3 (ho chiamato i conduttori rispettivamente r1, r2 ed r3 per comodità).
Passiamo alla parte pratica.
q1:q3 = r1:r3
Applico la proprietà del comporre:
(q1+q3):q3 = (r1+r3):r3 sapendo che q1+q3=-q2
-q2:q3 = (r1+r3):r3
Prodotto dei medi è uguale al prodotto degli estremi:
q3*(r1+r3) = -q2*r3
da cui ovviamente segue che:
q3 = (-q2*r3)/(r1+r3)
Quindi, sapendo che q1+q3=-q2, abbiamo che q1= -q2-q3
Mi esce -364 nC, mentre il risultato porta -444nC
Non mi vuole aiutare nessuno?

ma essendo conduttori non devono avere lo stesso potenziale?
quindi q1/r1=q3/r3
inoltre sai che q1+q3=-q2
prova a fare i calcoli....
quindi q1/r1=q3/r3
inoltre sai che q1+q3=-q2
prova a fare i calcoli....
"leo987":
ma essendo conduttori non devono avere lo stesso potenziale?
quindi q1/r1=q3/r3
inoltre sai che q1+q3=-q2
prova a fare i calcoli....
Questo è falso. r1 ed r3 sono un unico conduttore. Secondo voi potrebbe aiutare il th. di Gauss ?
Devi usare Gauss per calcolare \(\displaystyle \Delta V \) fra sphera con raggio \(\displaystyle r_3 \) e \(\displaystyle r_1 \).
Questo \(\displaystyle \Delta V \) deve essere 0 perche i due sphere sono collegate.
\(\displaystyle q_1\left(\frac{1}{r_3}-\frac{1}{r_1}\right)+q_2\left(\frac{1}{r_3}-\frac{1}{r_2}\right)=0 \)
\(\displaystyle q_1=\frac{q_2\left(\frac{1}{r_3}-\frac{1}{r_2}\right)}{\left(\frac{1}{r_3}-\frac{1}{r_1}\right)} \)
\(\displaystyle q_1=\frac{4000nC \left(\frac{1}{0,04}-\frac{1}{0,02}\right)}{\left(\frac{1}{0,04}-\frac{1}{0,004}\right)} \)
\(\displaystyle q_1=\frac{4000nC \left(25-50\right)}{\left(25-250\right)}=\frac{4000nC}{9}=???? nC \)
Questo \(\displaystyle \Delta V \) deve essere 0 perche i due sphere sono collegate.
\(\displaystyle q_1\left(\frac{1}{r_3}-\frac{1}{r_1}\right)+q_2\left(\frac{1}{r_3}-\frac{1}{r_2}\right)=0 \)
\(\displaystyle q_1=\frac{q_2\left(\frac{1}{r_3}-\frac{1}{r_2}\right)}{\left(\frac{1}{r_3}-\frac{1}{r_1}\right)} \)
\(\displaystyle q_1=\frac{4000nC \left(\frac{1}{0,04}-\frac{1}{0,02}\right)}{\left(\frac{1}{0,04}-\frac{1}{0,004}\right)} \)
\(\displaystyle q_1=\frac{4000nC \left(25-50\right)}{\left(25-250\right)}=\frac{4000nC}{9}=???? nC \)
Scusate se riprendo questo post vecchio di qualche mese...ma rifacendo lo stesso esercizio non riesco a capire perché nella prima equazione del post precedente ci sia scritto
q1(1/r3 - 1/r1) e non invece
q1(1/r2 - 1/r1)
q1(1/r3 - 1/r1) e non invece
q1(1/r2 - 1/r1)