Passaggio dall'attrito statico all' attrito dinamico.

Zkeggia
Salve, ho una domanda sugli attriti, statici e dinamici. Il libro afferma che la forza di attrito è una certa resistenza che si viene a creare quando una forza cerca di perturbare lo stato di quiete di un corpo immerso, o appoggiato, sopra una superficie. Analizzando il caso di un corpo su una superficie scabra, ci dice che quando cerchiamo di spostarlo si ha una forza di attrito proporzionale al peso e ad un coefficiente di attrito detto "coefficiente di attrito statico". Subito dopo parla dell'attrito dinamico che si incontra quando il corpo è in movimento e tende a frenarlo. Quello che non capisco è come si passi dall'attrito statico all'attrito dinamico fisicamente. Supponiamo di avere un corpo a cui è applicata una forza $F(t)$ costantemente crescente nel tempo, inizialmente non sufficiente a muoverlo. Mi domando cosa succeda un infinitesimo prima e dopo il momento $t$ in cui la forza è sufficiente a spostare il corpo, quindi cosa succeda in quel momento. In quell'intervallo di tempo in cui il corpo passa dall'opporre una resistenza $k_1$ ad opporre una resistenza $k_2$, generalmente diverse in modulo, di preciso cosa accade? e come si spiega a livello atomico o molecolare? Non riesco a capirlo. Non chiedo una trattazione fisica completa, mi basta capire a livello intuitivo cosa succede. Grazie.

Risposte
Faussone
I due coefficienti sono diversi perché la forza di attrito statico è diversa da quella di attrito dinamico.
Per iniziare a muovere un corpo infatti devi considerare che devi vincere delle forze maggiori che per mantenerlo in moto. Questo è dovuto alla natura delle forze a livello molecolare che fanno aderire il corpo al piano nel tuo esempio. Mi sembra anche intuitivo se devi spostare un armadio una volta che riesci a metterlo in movimento la forza da applicare è inferiore a quella per farlo muovere all'inizio.

Spero di aver almeno in parte risposto...

Zkeggia
sì e no, cioè questo è "ovvio", si vede nel quotidiano, solo che mi piacerebbe capirne il motivo, cioè alla fin fine abbiamo a livello della superficie a contatto con il tavolo una serie di molecole, ma che cosa succede tra quando si spingono e quando sono in moto? proprio a livello atomico non riesco a darmi una spiegazione, tutto qui.

Faussone
"Zkeggia":
sì e no, cioè questo è "ovvio", si vede nel quotidiano, solo che mi piacerebbe capirne il motivo, cioè alla fin fine abbiamo a livello della superficie a contatto con il tavolo una serie di molecole, ma che cosa succede tra quando si spingono e quando sono in moto? proprio a livello atomico non riesco a darmi una spiegazione, tutto qui.


Oh, be' se vuoi una spiegazione rigorosa a livello molecolare (che non sia il semplice vincere i legami intermolecolari "da fermo" richiede energia mentre sfruttando l'energia cinetica media delle molecole ne è richiesta meno) non credo che possa aiutarti.

boba74
A mio avviso è una cosa complessa, e probabilmente non del tutto chiara, in cui avvengono diversi fenomeni a scale diverse.
Anche senza necessariamente andare a indagare a livello molecolare, si dovrebbe tirare in gioco l'elasticità dei corpi a contatto (che non sono mai rigidi), e anche la plasticità e le deformazioni temporanee o permanenti.
Io concettualemente me lo immagino una cosa del genere (ma non so se l'esempio calza...), facciamo finta che i 2 corpi siano a contatto tra loro con uno o più piedini elastici. Finchè il corpo è fermo il piedino tocca il piano ed esercita su questo una micro-forza. Quando l'oggetto si sposta, il piedino "rimbalza" e quindi ha dei momenti in cui tocca il piano e dei momenti in cui è sollevato da questo e non esercita alcuna forza. Facendo la somma di tutte le micro-forze intermittenti, si ottiene un valore che è inferiore a quello in cui l'oggetto è fermo e tutti i piedini toccano terra.
Un po' come la differenza tra correre e strisciare i piedi per terra: nel primo caso si fa molta meno fatica perchè "in media" noi tocchiamo terra con una superficie d'appoggio inferiore.

mircoFN1
Mi dispiace Boba74 ma il tuo 'ragionamento' non sta in piedi.
Devi considerare che in media la forza verticale deve essere sempre pari al peso, altrimenti quuando spingi l'armadio avresti anche una variazione della posizione verticale del baricentro!

Concordo che i fenomenti d'attrito sono tra i più complessi e meno modellabili della meccanica classica. L'interazione tra le molecole del legno e quelle del pavimento è mediata dalla effettiva natura delle superfici che morfologiacamente e chimicamente sono corpi molto complessi. Pertanto conviene (perché utile) considerare la differenza dei coefficienti come una evidenza sperimentale.
Ricorda che è possibile modificare i contatti (per esempio con lubrificanti) in modo che tali differenze siano anche molto contenute e anche con sorprese.

ciao

Sk_Anonymous
Credo che Boba74 abbia colto il senso, anche se l'ultima parte del suo ragionamento non quadra. Il motivo non sta nel fatto che sia assurdo che il baricentro dell'armadio si sposta (verso l'alto si può spostare, perchè no?), ma che la forza verticale media che il pavimento esercita sull'armadio deve eguagliare il peso, a meno che non si sfondi.
Un esempio simile tanto per semplificare potrebbe essere questo: si confronta la distanza percorsa da una pallina che viene fatta rotolare su un pavimento orizzontale con attrito volvente e la stessa pallina che viene fatta rimbalzare, partendo con la stessa velocità orizzontale.
é un esempio che calza poco questo, perchè è presente attrito volvente, non radente.
Ma allora pensiamo ad una gomma da cancellare schiacciata sul tavolo da una forza verticale e messa in moto da una forza orizzontale, fa una specie di vibrazione (concentrata su una ben determinata frequenza) che può essere schematizzata idealmente come una prima fase in cui la gomma si deforma mentre la superficie di contatto rimane ferma e una seconda fase in cui la superficie si stacca dal tavolo e la gomma ritorna indeformata. Il moto è dato da una sequenza di queste fasi.
Si tratta di una schematizzazione, è probabile che non si ha una fase in cui la superficie rimane proprio ferma e una in cui la gomma ritorna proprio indeformata, però può risultare che la velocità media relativa tra il tavolo e la gomma in un dato punto della gomma "negli intervalli di tempo in cui sono a contatto" risulta ridotta rispetto alla velocità tra gomma e tavolo, quindi che il lavoro prodotto dalla forza di contatto sia ridotto rispetto al prodotto della forza statica per la lunghezza percorsa, cioè che la forza di attrito dinamico sia inferiore rispetto a quella statica.

mircoFN1
Scusami se insisto, ma non ci siamo.
Si tratta proprio di un meccanismo diverso alla base dell'effetto statico e di quello dinamico (o più correttamente cinetico) che produce la differenza di coefficiente, non c'entra la variazione della forza verticale.
Il fenomeno della gomma che tu descrivi è una conseguenza della differenza tra i due coefficienti (effetto di stick-slip), se vuoi ne è una esemplificazione, ma non ne è la spiegazione.

Sk_Anonymous
Ho supposto che la forza verticale che il tavolo esercita sulla gomma in media bilanci la forza verticale esterna e il peso esercitate sulla gomma.
Proprio come nel caso della pallina che rimbalza con attrito volvente, l'effetto di questo attrito si trova solo negli intervalli di tempo in cui avvengono gli urti e la rotazione relativa media, considerando solo quella che avviene durante gli urti, risulta ridotta rispetto alla rotazione relativa che la pallina ha lungo tutto il suo percorso.
Ammesso che l'energia persa per attrito volvente sia proporzionale alla rotazione relativa solo quando quando c'è il contatto, l'energia persa per il solo attrito volvente da una pallina che rimbalza è minore rispetto a quella persa da una pallina che rotola.
Nell'esempio della gomma invece il tentativo di spiegazione si basa su una velocità media ridotta tra gomma e tavolo, considrando solo quella che ha negli intervalli di tempo in cui questi sono a contatto, rispetto alla velocità che effettivamente ha la gomma, questo è dovuto alla deformazione a taglio della gomma quando c'è il contatto e nel ritorno alla configurazione indeformata quando il contatto non c'è.

mircoFN1
OK, non voglio entrare nel merito delle tue supposizioni e della tua spiegazione (che in vari punti peraltro non condivido), mi limito a osservare che non hai fornito una spiegazione della differenza tra i coefficienti di attrito (la domanda alla base della discussione). I coefficienti di attrito statico e cinetico sono tra loro diversi anche nel contatto di corpi la cui deformabilità può essere trascurata e quindi non è un effetto dovuto solo a oscillazioni o vibrazioni (anche se ovviamente il fenomeno del contatto ne risulta fortemente influenzato).
È evidente che le forze di attrito sono diverse se la componente normale della forza di contatto varia (in modo intermittente o continuo), ma la differenza di coefficiente di attrito si spiega con un diverso meccanismo di azione delle azioni tangenziali che si manifestano nei due casi.

ciao

Sk_Anonymous
È evidente che le forze di attrito sono diverse se la componente normale della forza di contatto varia (in modo intermittente o continuo), ma la differenza di coefficiente di attrito si spiega con un diverso meccanismo di azione delle azioni tangenziali che si manifestano nei due casi.

Non è proprio così evidente: se il rapporto tra forza verticale e forza di attrito che in un dato punto rimane sempre lo stesso non cambia nulla considerando la sola intermittenza della forza verticale che, ammesso che in media questa forza rimanga costante.

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.