Moto proiettili

marco.ve1
Ciao a tutti, nel seguente problema:

Due corpi vengono lanciato dallo stesso punto del suolo, il primo con velocità di modulo [tex]2v_0[/tex] e inclinata di un angolo [tex]2\alpha[/tex] rispetto all'orizzontale, il secondo con velocità di modulo [tex]v_0[/tex] inclinata di un angolo [tex]\alpha[/tex], ma con un ritardo t* rispetto al primo.
Si determini t* sapendo che i due corpi si incontrano nel punto di massima quota raggiunto dal secondo.

Ho trovato l'istante t' in cui si incontrano ponendo la velocità verticale del secondo pari a zero ([tex]t' = \frac{v_0 \cdot sin\alpha }{g} + t^*[/tex]) e ho ricavato t* usando ciò e imponendo che le ascisse dei due corpi siano uguali (si trova [tex]t^* = \frac{v_0 \cdot sin\alpha \cdot(cos\alpha -2cos(2\alpha))}{2g \cdot cos(2\alpha)}[/tex]).
Poi da quel 'sapendo che' mi sembra di capire che non è necessario verificare che anche le ordinate coincidano in t' (anche perchè viene fuori una cosa abbastanza lunga), secondo voi?

Grazie in anticipo

Risposte
marco.ve1
Nessuno?

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.