Esercizio sul terzo principio della dinamica
ciao a tutti,
vorrei chiedervi un aiuto sulla risoluzione di un problema.
scusate se non ho utilizzato una discussione sull'argomento già esistente ma non ne ho trovati.
l'esercizio è il seguente: due persone su una superficie senza attrito si spingono ciascuno con una forza di 200 N.
uno pesa 80 kg, l'altro 100. quanto sono le accelerazioni di entrambi?.
Il mio dubbio è dato dal fatto che se tutti e due fossero soggetti a una forza di 200 N di verso opposto (400 N/2),
come parrebbe suggerire la logica, non troverei giustificati i casi limite in cui una delle due masse fosse di grandezza tendente
a infinito, oppure tendente a zero.
Mi spiego meglio. se si sommassero sempre le forze e si dividesse per due, la forza sulla seconda massa sarebbe 200 N anche se la prima fosse infinita o nulla? ma le accelerazioni della seconda massa in questi casi non variano drasticamente? ( maggiore nel primo minore nel secondo?)
grazie!!!!
vorrei chiedervi un aiuto sulla risoluzione di un problema.
scusate se non ho utilizzato una discussione sull'argomento già esistente ma non ne ho trovati.
l'esercizio è il seguente: due persone su una superficie senza attrito si spingono ciascuno con una forza di 200 N.
uno pesa 80 kg, l'altro 100. quanto sono le accelerazioni di entrambi?.
Il mio dubbio è dato dal fatto che se tutti e due fossero soggetti a una forza di 200 N di verso opposto (400 N/2),
come parrebbe suggerire la logica, non troverei giustificati i casi limite in cui una delle due masse fosse di grandezza tendente
a infinito, oppure tendente a zero.
Mi spiego meglio. se si sommassero sempre le forze e si dividesse per due, la forza sulla seconda massa sarebbe 200 N anche se la prima fosse infinita o nulla? ma le accelerazioni della seconda massa in questi casi non variano drasticamente? ( maggiore nel primo minore nel secondo?)
grazie!!!!
Risposte
Attento. Il principio di azione e reazione è valido per ciascuna forza in gioco.
Il testo dice che A spinge B con forza $F_1$, e B spinge A con forza $F_2 = F_1$.
Usa questo fatto e la seconda legge della dinamica $\vec a = \vecF/m$ per risolvere il problema.
Il testo dice che A spinge B con forza $F_1$, e B spinge A con forza $F_2 = F_1$.
Usa questo fatto e la seconda legge della dinamica $\vec a = \vecF/m$ per risolvere il problema.