Campo centrale e distanze

Mondo3
Qui indichiamo con $i$ e $j$ i versori degli assi x e y.

Un punot materiale di massa m si muove nel piano xy sotto l'azione della forza $F= -k x i-kyj$ con $k>0$. La posizione e la velocità iniziale risultano $P_0=(x_0, 0)$, $V_0=(0, v_0)$.

Si calcoli la distanza massima dall'origine raggiunta dal punto.

(io l'ho risolto trovando esplicitamente la triaettoria, ovvero risolvendo le due equazioni differenziali, poi calcolando la distanza e imponendone l'annullamento della derivata... c'è un modo più veloce?)

Risposte
Alicchio1
Io proverei con il bilancio energetico tra Lavoro della forza , energia cinetica ed energia potenziale. (1/2 = 0.5)

F* s - 0.5 K x^2 = 0.5 m v^2

(s e' in funzione di x e y)

da qui trovi la velocita' in funzione delle coordinate x,y e poi la poni uguale a 0...

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.