Analisi Dimensionale di una equazione...
In un esercizio di un esame di Fisica del mio professore, è richiesto di controllare che la seguente equazione sia dimensionalmente corretta:

per quello che sono riuscita a fare, l'esercizio lo risolvo così....
$L^2 T^-2 = L^2 T^-2 + LT^-2$
Così l'equazione non risulta corretta! Dove ho sbagliato??

per quello che sono riuscita a fare, l'esercizio lo risolvo così....
$L^2 T^-2 = L^2 T^-2 + LT^-2$
Così l'equazione non risulta corretta! Dove ho sbagliato??
Risposte
Anche $2a_x(x-x_0)$ è il quadrato di una lunghezza diviso il quadrato di un tempo. Una lunghezza ti viene dall'accelerazione, l'altra dallo spostamento $(x-x_0)$.
"valeae":
Così l'equazione non risulta corretta! Dove ho sbagliato??
sospetto che abbia male interpretato il significato delle parentesi. La parentesi al primo membro significa $v_x$ di $x$ mentre la parentesi al secondo membro non è il segno di una funzione ma sottintende il prodotto: $2a_x \times (x-x_0)$
grazie mille!