Trovare la funzione d'onda

nicbam
Ciao a tutti, vi scrivo un esercizio che non so come trattare.
Obiettivo: trovare la $\psi(\alpha,\beta,\gamma,\phi)$

${1/(6\phi)(\partial_\beta^2 +\partial_\gamma^2)+1/6\phi\partial_\phi^2-1/3(\partial_\alpha\partial_\phi)}\psi=0$

Qualcuno conosce qualche metodo?

Risposte
dissonance
Detto così è difficile che qualcuno ti risponda. Da dove viene quella equazione, e cosa sono \(\alpha, \beta, \gamma, \delta\)? Coordinate polari? Non mi sembra un problema facile, in ogni caso.

nicbam
"dissonance":
Detto così è difficile che qualcuno ti risponda. Da dove viene quella equazione, e cosa sono \(\alpha, \beta, \gamma, \delta\)? Coordinate polari? Non mi sembra un problema facile, in ogni caso.

Ciao, no non sono coordinate polari.
Sono incognite da cui deve dipendere la funzione d'onda.

dissonance
E dove variano queste "incognite" (il termine corretto è "variabili")? Per esempio, \(\phi\in [0, \pi]\)?

---

Scritto così, non penso ci sia speranza di una soluzione analitica. Ma forse si può fare qualche cambio di variabile e ricondurlo all'equazione delle onde, non so. E poi non hai specificato le condizioni iniziali o al contorno.

nicbam
Grazie della risposta.
Sono variabili continue reali.
Non è specificato, ma credo varino da (-inf,+inf)

$ \phi $ non descrive un angolo, è solo un nome per la variabile.

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.