Calcolo integrale complesso

Angus1956
Calcolare $\int_C dz/(z^4+z^3-2z^2) dz$ dove $C:t->3e^(it)$ con $t in [0,2pi]$.

Io ho pensato di fare con il teorema dei residui, ovvero $\int_C dz/(z^4+z^3-2z^2) dz=2pi i(\sum_{z_0}res_{z_0}(1/(z^4+z^3-2z^2)))$ dove $z_0$ sono i poli di $1/(z^4+z^3-2z^2)$ nel disco di raggio $3$ centrato in $0$, tali poli sono $0,1,-2$. Abbiamo che $0$ è un polo di ordine 2, per cui $res_{0}(1/(z^4+z^3-2z^2))=-1/4$, mentre gli altri due sono poli di ordine 1 per cui $res_{1}(1/(z^4+z^3-2z^2))=1/3$ e $res_{-2}(1/(z^4+z^3-2z^2))=-1/12$, per cui $\int_C dz/(z^4+z^3-2z^2) dz=2pi i(-1/4+1/3-1/12)=0$

Può andare bene?

Risposte
pilloeffe
Mi pare corretto.

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.