Studio funzione
Data questa funzione:
[tex]$f(x)=\left\{\begin{matrix} \frac{1}{x^2+1} & x<0 \\ \cos x & 0\le x<\frac{\pi}{2} \\ \ln (x+1-\frac{\pi}{2}) & x\ge \frac{\pi}{2}
\end{matrix}\right.$[/tex]
Supponendo di voler studiare la concavità e la convessità analiticamente, mi devo preoccupare che anche per la derivata seconda il teorema del limite della derivata sia rispettato? Cioè, devo verificare che [tex]$\lim_{x\to x_0-} f''(x)=\lim_{x\to x_0^+} f''(x)$[/tex] ( in cui $x_0$ è un punto di accumulazione per $f'(x)$ ) ?
[tex]$f(x)=\left\{\begin{matrix} \frac{1}{x^2+1} & x<0 \\ \cos x & 0\le x<\frac{\pi}{2} \\ \ln (x+1-\frac{\pi}{2}) & x\ge \frac{\pi}{2}
\end{matrix}\right.$[/tex]
Supponendo di voler studiare la concavità e la convessità analiticamente, mi devo preoccupare che anche per la derivata seconda il teorema del limite della derivata sia rispettato? Cioè, devo verificare che [tex]$\lim_{x\to x_0-} f''(x)=\lim_{x\to x_0^+} f''(x)$[/tex] ( in cui $x_0$ è un punto di accumulazione per $f'(x)$ ) ?
Risposte
Direi di si, se vuoi che una funzione sia la derivata di un altra, e quindi non può avere discontinuità di prima specie, come diretta conseguenza del teorema di Darboux, comunque può benissimo averne di seconda specie, cioè non esistere finito uno dei due limiti o entrambi, oppure non esistere affatto.