Serie numeriche
Qualcuno potrebbe aiutarmi con questa serie numerica.
\( \sum_{n=1 }^{∞} \frac{n!n^3}{n^n} \)
Avevo pensato di risolverla con il criterio del confronto asintotico, ma l'asintotico mi esce \( \frac{n!}{n^n} \)
e andando a fare il limite mi esce infinito e non 1.
p.s. sono i primi esercizi che faccio qualcuno potrebbe spiegarmi se il confronto che ho utilizzato è giusto o ho fatto qualche errore?
\( \sum_{n=1 }^{∞} \frac{n!n^3}{n^n} \)
Avevo pensato di risolverla con il criterio del confronto asintotico, ma l'asintotico mi esce \( \frac{n!}{n^n} \)
e andando a fare il limite mi esce infinito e non 1.
p.s. sono i primi esercizi che faccio qualcuno potrebbe spiegarmi se il confronto che ho utilizzato è giusto o ho fatto qualche errore?
Risposte
Ciao gionni98,
Facendo uso del criterio del rapporto dovresti scoprire abbastanza facilmente che converge...
Facendo uso del criterio del rapporto dovresti scoprire abbastanza facilmente che converge...

Ho provato a fare con il criterio del confronto ma dal limite mi esce infinito quindi diverge. Non riesco a capire dove sbaglio.
La serie proposta
$ \sum_{n=1}^{+\infty} \frac{n!n^3}{n^n} $
è a termini positivi, cioè posto $a_n := \frac{n!n^3}{n^n} $ si ha $a_n > 0 \quad \AA n $
Applicando il criterio del rapporto si ha:
$ lim_{n \to +\infty} \frac{a_{n + 1}}{a_n} = lim_{n \to +\infty} \frac{frac{(n + 1)!(n + 1)^3}{(n + 1)^{n + 1}}}{\frac{n! n^3}{n^n}} = lim_{n \to +\infty} \frac{(n + 1)n!(n + 1)^3}{(n + 1)(n + 1)^n} \cdot \frac{n^n}{n! n^3} = $
$ = lim_{n \to +\infty} (\frac{n + 1}{n})^3 \cdot \frac{1}{(\frac{n + 1}{n})^n} = lim_{n \to +\infty} (1 + 1/n)^3 \cdot \frac{1}{(1 + 1/n)^n} = 1/e $
Dato che $1/e < 1 $ la serie proposta converge.
$ \sum_{n=1}^{+\infty} \frac{n!n^3}{n^n} $
è a termini positivi, cioè posto $a_n := \frac{n!n^3}{n^n} $ si ha $a_n > 0 \quad \AA n $
Applicando il criterio del rapporto si ha:
$ lim_{n \to +\infty} \frac{a_{n + 1}}{a_n} = lim_{n \to +\infty} \frac{frac{(n + 1)!(n + 1)^3}{(n + 1)^{n + 1}}}{\frac{n! n^3}{n^n}} = lim_{n \to +\infty} \frac{(n + 1)n!(n + 1)^3}{(n + 1)(n + 1)^n} \cdot \frac{n^n}{n! n^3} = $
$ = lim_{n \to +\infty} (\frac{n + 1}{n})^3 \cdot \frac{1}{(\frac{n + 1}{n})^n} = lim_{n \to +\infty} (1 + 1/n)^3 \cdot \frac{1}{(1 + 1/n)^n} = 1/e $
Dato che $1/e < 1 $ la serie proposta converge.
Grazie mille. Il calcolo del limite non mi si trovava perché nel termine $ n^n $ non inserivo il +1 all'esponente