Semplice derivata seconda
Ciao a tutti ragazzi, ho un dubbio per quanto riguarda il calcolo di una derivata seconda. La funzione in questione è:
$f(t)= C (1+i)^t$ dove C e i sono delle costanti
la derivata prima mi risulta:
$f(t)'=C(1+i)^tlog(1+i)$ applicando le opportune regole di derivazione.
Ora mi servirebbe che qualcuno di voi mi fornisse la sua soluzione della derivata seconda perché non sono certo di aver fatto bene in quanto ci sono un paio di passaggi che non mi convincono, qualcuno può darmi una mano please?
$f(t)= C (1+i)^t$ dove C e i sono delle costanti
la derivata prima mi risulta:
$f(t)'=C(1+i)^tlog(1+i)$ applicando le opportune regole di derivazione.
Ora mi servirebbe che qualcuno di voi mi fornisse la sua soluzione della derivata seconda perché non sono certo di aver fatto bene in quanto ci sono un paio di passaggi che non mi convincono, qualcuno può darmi una mano please?
Risposte
$C*log(1+i)$ va semplicemente considerato come una costante, quindi devi solo derivare (di nuovo) $(1+i)^t$...
dunque il risultato è immediato...
dunque il risultato è immediato...
Viene dunque $C(1+i)^tlog(1+i)log(1+i)$ ?
ovvio che sì
$log(1+i)*log(1+i)$ puoi scriverlo $log^2(1+i)$
$log(1+i)*log(1+i)$ puoi scriverlo $log^2(1+i)$
Ovvia è solo la morte. Grazie mille
