Risolvere un equazione

fustaa
Buongiorno a tutti,

non riesco a risolvere questa equazione:

$1.2x^(1.5) + 2x - 12.49 = 0 $

Grazie in anticipo,
Alessandro

Risposte
gugo82
Grazie per averci informato.

Ma noi che dovremmo fare?

fustaa
Ehm pensavo ci fosse un modo per risolverla, ad esempio x = ecc. ecc.

gugo82
Il modo c'è: la sostituzione $x=t^2$ trasforma la tua equazione in un'equazione di terzo grado, che si risolve con le formule di Cardano... Che sono troppo complicate da ricordare e perciò conviene affidarsi ad un calcolatore.

Tuttavia, se non ti servono le soluzioni esatte, esistono varie tecniche per ottenere approssimazioni decenti.
Quindi la questione è: a che ti servono le soluzioni?

fustaa
Ah ho capito no ma era un esercizio che stavo svolgendo in maniera autonoma sull'allocazione intertemporale efficiente delle risorse in ambito economico e mi sono imbattuto in questa equazione (che poi è l'ultima da risolvere prima del risultato finale). La x in questo caso rappresenta le unità consumate dall'individuo A al tempo 1 (Ca1) e sostituendo mi avrebbe consentito di sapere Ca0 (le unità consumate da A al tempo 0) e Cb0 e Cb1 ovvero l'altro individuo ai due tempi il tutto massimizzando il prodotto delle utilità (di tipo cobb-douglas) sotto il vincolo della scarsità delle risorse (12.49 in questo caso).

Ok allora proverei con le approsimazioni, sapresti indicarmene qualcuna?
grazie molte

pilloeffe
Ciao fustaa,
"fustaa":
proverei con le approsimazioni, sapresti indicarmene qualcuna?

Proverei col metodo di Newton-Raphson.
Dando l'equazione proposta "in pasto" a WolframAlpha risulta un'unica soluzione reale molto vicina a $x = 3 $.

gugo82
Visto che $f(3)<0

fustaa
Ciao pilloeffe,

Grazie molte della risposta,

e grazie anche a te, gugo82.

Un saluto a tutti!

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.