Radicali doppi e trigonometria

mic8
Ciao!

Qualcuno sa dirmi se ci sono degli studi sul rapporto tra i 2 argomenti: trigonometria e radicali doppi?

Grazie!

Risposte
Sk_Anonymous
Cosa intendi di preciso?

Luca77

mic8
Scusa il ritardo nella risposta...

Ad es.: cos(Pi/4) = 1/rad(2)
cos(Pi/6) = rad(3)/2
...

Si possono trovare delle corrispondenze tra coseni e radici.

Conosci qualche studio completo su questo tipo di relazione?

Sk_Anonymous
Gli angoli da te utilizzati sono notevoli pero', mi sembra un po' poco osservare due relazioni e voler congetturare qualcosa. Anche perche' in generale seno e coseno sono funzioni trascendenti, ovvero restituiscono, nella maggior parte dei casi, numeri trascendenti, tra i quali non rientrano le radici (i radicali sono numeri algebrici).

Comunque, io personalmente non conosco studi in questa direzione; proviamo ad aspettare se qualcuno ne sa di piu'.

Luca77
http://www.llussardi.it

fireball1
Non penso ci sia un legame particolare tra i radicali e la trigonometria...
L'unica cosa che mi viene in mente di dire è che quei valori
(1/sqrt2 , sqrt3/2 etc...) derivano ovviamente da determinati calcoli,
e non sono messi lì per far comodo a noi. Il valore
delle funzioni goniometriche di angoli notevoli si può
dimostrare in vari modi. Ad esempio, se non si conosce
il coseno (oppure anche il seno o la tangente o la cotangente)
dell'angolo di 45° , esso può comunque essere
calcolato utilizzando le formule di bisezione, che esprimono
il seno/coseno/tangente/cotangente della metà di un angolo in funzione
del coseno dell'intero angolo.
Se alfa è l'intero angolo, il coseno di alfa/2 è:
(per comodità scrivo a al posto di alfa)
cos(a/2) = sqrt((1 + cos(a))/2)
Nel caso in cui sia a = 90°, si ha:
cos(45°) = sqrt((1 + cos(90°))/2) =
= sqrt((1 + 0)/2) = sqrt(1/2) = 1/sqrt(2)
Se ti può essere utile, vedi questo formulario
su cui ho lavorato io stesso insieme a Camillo.

mic8
Grazie 1000!

Questo formulario mi sarà utile

Ciao!

fireball1
Ne sono veramente felice!
Anche Camillo penso che ne sarà molto felice!

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.