"Strano" logaritmo

rosannacir
Ciao,
molto spesso mi sono trovata dinanzi a questa funzione: [tex]f(x)=\ln \left| x \right|[/tex] . Innanzitutto ho studiato il valore assoluto, perciò ho distinto:
- se [tex]x\geq 0 \Rightarrow \left| x \right|=+x[/tex] , perciò la funzione che si ottiene è: [tex]f(x)= \ln x[/tex] che so risolvetre tranquillamente ;
- se [tex]x<0 \Rightarrow \left| x \right|=-x[/tex] , perciò la funzione che si ottiene è: [tex]f(x)=\ln (-x)[/tex] . Quest'ultima non si potrebbe risolvere perchè per definizione il logaritmo esiste per quei valori delle [tex]x[/tex] che rendono l'argomento del logaritmo [tex]> 0[/tex]. Perciò ho pensato di risolverlo comunque in questo modo:
* pongo [tex]\ln (-x)=z[/tex] che equivale a scrivere: [tex]e^{z}=-x[/tex]
* porto il segno negativo all'altro membro: [tex]-e^{z}=x[/tex] che equivale a scrivere: [tex]-\left[ \ln x \right]=z[/tex]
Così posso continuare il mio esercizio. Premetto che questo è stato un mio modo di risolverlo al fine di trovare a tutti i costi una soluzione....ma non so se è giusto o meno. Qualcuno può dirmelo?
GRAZIE :D

Risposte
itpareid
ti piace il rischio eh?! :wink:

rosannacir
Quindi è giusto????? (ho i miei dubbi :lol: )

itpareid
"rosannacir":

- se [tex]x<0 \Rightarrow \left| x \right|=-x[/tex] , perciò la funzione che si ottiene è: [tex]f(x)=\ln (-x)[/tex] .

dico la mia: se $x$ è negativo l'argomento della funzione $ln(-x)$ è positivo...

rosannacir
Dalla definizione di logaritmo e dal suo grafico credo che tu ti stia sbagliando!

Lorin1
"itpareid":
[quote="rosannacir"]
- se [tex]x<0 \Rightarrow \left| x \right|=-x[/tex] , perciò la funzione che si ottiene è: [tex]f(x)=\ln (-x)[/tex] .

dico la mia: se $x$ è negativo l'argomento della funzione $ln(-x)$ è positivo...[/quote]

Sono d'accordo!

@melia
$x$ è un numero relativo, quindi dotato di segno, se il suo segno è positivo non ci sono problemi e $x=|x|$, se $x$ è un numero negativo, non è possibile sopprimere il segno che è all'interno della variabile stessa, l'unico modo per farlo diventare positivo è cambiarlo di segno mettendogli un $-$ davanti, quindi se $x<0$ allora $-x>0$

yellow2
L'n-esima vittima della definizione del modulo! All'inizio confonde sempre, ma non ti devi scordare del significato che ha il modulo al di là della definizione. Se un numero è negativo, lo trasforma in positivo. Per cui quel logaritmo ha dei problemi (e pure belli seri) solo se $x=0$. In tutti gli altri casi l'argomento è maggiore di zero!

Comunque anche nei calcoli che hai fatto c'è un errore: nell'ultimo passaggio hai applicato il logaritmo al secondo membro (cosa comunque scorretta perché stai considerando $x<0$!), mentre al primo membro hai fatto un "magheggio" non consentito applicandolo sotto il segno $-$.

rosannacir
Grazie mille

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.