Problema di cauchy del primo ordine
buonasera a tutti
ho questo problema di cauchy:
$y' cos x + y sin x = e^x cos^2 x$
$y(0)= 0$
la riscrivo:
$y' + y tg x = e^x cos x$
$y' = - y tg x + e^x cos x$
l'associata: $y' = - y tg $
$y = c e^(\int -tg x dx) = c cos x$
il resto della soluzione:
$y(x) = e^(\int -tg x dx)(y_{0} + \int_{0}^{x} e^(\int_{0}^{t} tg s ds) e^t cos t dt) = e^(\int -tg x dx) (y_{0}+ \int_{0}^{x} e^(-log cos t) e^t cos t dt) = c cos x (\int_{0}^{x} e^t dt) = c cos x e^x$
dice wolfram che dovrebbe venire:
$y(x) = c cos x + e^x cos x $
invece a me viene:
$y(x) = c cos x (y_{0} + e^x) = c cos x (e^x) $ e quindi sommando le due soluzioni (omegenea associata + omogenea):
$y(x) = c cos x + c cos x (e^x)$
ma non credo sia cosi....
forse sono poco lucido ma credo il procedimento sia corretto. aspetto qualche vostro chiarimento.
ho questo problema di cauchy:
$y' cos x + y sin x = e^x cos^2 x$
$y(0)= 0$
la riscrivo:
$y' + y tg x = e^x cos x$
$y' = - y tg x + e^x cos x$
l'associata: $y' = - y tg $
$y = c e^(\int -tg x dx) = c cos x$
il resto della soluzione:
$y(x) = e^(\int -tg x dx)(y_{0} + \int_{0}^{x} e^(\int_{0}^{t} tg s ds) e^t cos t dt) = e^(\int -tg x dx) (y_{0}+ \int_{0}^{x} e^(-log cos t) e^t cos t dt) = c cos x (\int_{0}^{x} e^t dt) = c cos x e^x$
dice wolfram che dovrebbe venire:
$y(x) = c cos x + e^x cos x $
invece a me viene:
$y(x) = c cos x (y_{0} + e^x) = c cos x (e^x) $ e quindi sommando le due soluzioni (omegenea associata + omogenea):
$y(x) = c cos x + c cos x (e^x)$
ma non credo sia cosi....
forse sono poco lucido ma credo il procedimento sia corretto. aspetto qualche vostro chiarimento.

Risposte
$\int_0^x e^t\ dt=e^x-1$...