Limite in due variabili
Ciao a tutti,
Vi scrivo perché non riesco a capire come risolvere questo limite:
Il dominio \( D=\mathbb{R}\setminus\{(x,y):xy=0\} \) e sulla restrizione \( \displaystyle\lim_{x\rightarrow +\infty} f(x,x)=0 \), quindi, se il limite in due variabili esiste, vale 0.
Il problema è che non riesco ne a maggiorare il modulo della funzione e farlo andare a 0, ne riesco a trovare una restrizione su cui il limite non sia nullo. Deve essere una cavolata che non mi sta venendo in mente.
In coordinate polari mi sembra la stessa zuppa delle coordinate cartesiane. Qualche idea?
Vi ringrazio
Vi scrivo perché non riesco a capire come risolvere questo limite:
\( \displaystyle\lim_{(x,y)\rightarrow \infty} \frac{\sin(y\sqrt[3]{x})}{xy} \)
Il dominio \( D=\mathbb{R}\setminus\{(x,y):xy=0\} \) e sulla restrizione \( \displaystyle\lim_{x\rightarrow +\infty} f(x,x)=0 \), quindi, se il limite in due variabili esiste, vale 0.
Il problema è che non riesco ne a maggiorare il modulo della funzione e farlo andare a 0, ne riesco a trovare una restrizione su cui il limite non sia nullo. Deve essere una cavolata che non mi sta venendo in mente.
In coordinate polari mi sembra la stessa zuppa delle coordinate cartesiane. Qualche idea?
Vi ringrazio
Risposte
Ciao! Che maggiorazioni hai provato? Che ne dici di questa?
$$|\sin(x)| \le 1 \quad \forall x \in {\rm I\!R}$$
$$|\sin(x)| \le 1 \quad \forall x \in {\rm I\!R}$$
"ValeForce":
Ciao! Che maggiorazioni hai provato? Che ne dici di questa?
$$|\sin(x)| \le 1 \quad \forall x \in {\rm I\!R}$$
Si certo ma \( \frac{1}{|xy|} \) non ha limite all'infinito.
Prova lungo la curva $(\frac{1}{t^3},t)$.
"Mephlip":
Prova lungo la curva $(\frac{1}{t^3},t)$.
Grazie! La funzione su quella curva va a +$\infty$ perché \( \displaystyle\lim_{y\rightarrow +\infty} \frac{sin(y\sqrt[3]{\frac{1}{y^3}})}{y \frac{1}{y^3}}=\lim_{y\rightarrow +\infty} \frac{sin(1)}{ \frac{1}{y^2}}=+\infty \)