Limite funzione esponenziale
Salve ragazzi.
avrei bisogni di aiuto con questo limite, che mi sta crando non pochi problemi:
$lim_(x->0)(x \exp^{sqrt( (\logx)^2+ \logx)})$
ho provato a usare l'Hopital ponendo $lim_(x->0)(( \exp^{sqrt( (\logx)^2+ \logx)})/x^(-1))$, ma niente, continua a darmi problemi, e non capisco in che modo posso arrivare a questo risultato
http://www.wolframalpha.com/input/?i=limit+xe%5E%28%28%28logx%29%5E2%2Blogx%29%5E1%2F2%29++as+x+-%3E0
potreste mostrarmi la via per farlo?
avrei bisogni di aiuto con questo limite, che mi sta crando non pochi problemi:
$lim_(x->0)(x \exp^{sqrt( (\logx)^2+ \logx)})$
ho provato a usare l'Hopital ponendo $lim_(x->0)(( \exp^{sqrt( (\logx)^2+ \logx)})/x^(-1))$, ma niente, continua a darmi problemi, e non capisco in che modo posso arrivare a questo risultato
http://www.wolframalpha.com/input/?i=limit+xe%5E%28%28%28logx%29%5E2%2Blogx%29%5E1%2F2%29++as+x+-%3E0
potreste mostrarmi la via per farlo?
Risposte
"Viator":
Salve ragazzi.
avrei bisogni di aiuto con questo limite, che mi sta crando non pochi problemi:
$lim_(x->0)(x \exp^{sqrt( (\logx)^2+ \logx)})$
ho provato a usare l'Hopital ponendo $lim_(x->0)(( \exp^{sqrt( (\logx)^2+ \logx)})/x^(-1))$, ma niente, continua a darmi problemi, e non capisco in che modo posso arrivare a questo risultato
http://www.wolframalpha.com/input/?i=limit+xe%5E%28%28%28logx%29%5E2%2Blogx%29%5E1%2F2%29++as+x+-%3E0
potreste mostrarmi la via per farlo?
Possiamo scrivere $x \exp^{sqrt( (\logx)^2+ \logx)}=exp^{sqrt( (\logx)^2+ \logx)+\log x}$
Consideriamo l'esponente - nota che $\log x\to-\infty$ e quindi $\sqrt{\log^2x}=-\log x$ - si ha :
$sqrt( (\logx)^2+ \logx)+\log x=(-\log x)(\sqrt{1+1/\log x}-1)$.
Per fare il limite della quantità sopra quando $x\to0^+$ conviene sostituire $y=(\log x)^{-1}$ di modo che ci si riconduce a
$\lim_{y\to0^-}-\frac{\sqrt{1+y}-1}{y}=-1/2$
A questo punto basta tornare indietro.
Grazie mille