Integrale formula chiusa

giammarco.cugliari
Salve ragazzi, non riesco più a trovare la formula che avevo per calcolare questo tipo di integrali


$ int_(0)^(oo) r^me^(-cr)dr $


so svolgerlo ma ne devo calcolare veramente troppi.

Un grande abbraccio a chiunque mi darà una mano :-D

Risposte
javicemarpe
Try to integrate by parts and use some induction on $m$.

giammarco.cugliari
i know how to integrate by parts , i'm looking for faster method

javicemarpe
Good luck :lol:

giammarco.cugliari
:snakeman:

javicemarpe
:lol: I think that integration by parts and induction on $m$ is the fastest method (if it's not the only one).

giammarco.cugliari
like this

$ int_(0)^(oo) x^(2k)e^(-cx^2) dx =(1\cdot 3\cdot 5\cdot (2k-1))/(2^(k+1)c^(k+1/2) $

i have to do too many of this with different coefficents

javicemarpe
Well, of course the result of integrating by parts will depend on $m$ and $c$ and will give you a closed formula. But first you have to prove it.

giammarco.cugliari
i'll try..I thought to find it done

javicemarpe
It is not dificult. In fact, it's enough (if I'm not mistaken) to integrate by parts two times: one for the induction and one for the base case.

giammarco.cugliari
I found

$ int_(0)^(oo) x^(n)e^(-ax)dx =(n!)/(a^(n+1 $

It was not that much difficult,my laziness..

javicemarpe
Congratulations!
You have earned a trophy!

Gamma function

giammarco.cugliari
Damn ! My buggy head ..

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.