Gradiente in coordinate sferiche
Non mi sono chiari i passaggi di questo tipo:
$\frac{\partial}{\partial x}=\frac{\partial \rho}{\partial x}\frac{\partial}{\partial \rho}+\frac{\partial \varphi}{\partial x}\frac{\partial}{\partial \varphi}+\frac{\partial \theta}{\partial x}\frac{\partial}{\partial \theta}$
Nella derivazione della formula link
$\frac{\partial}{\partial x}=\frac{\partial \rho}{\partial x}\frac{\partial}{\partial \rho}+\frac{\partial \varphi}{\partial x}\frac{\partial}{\partial \varphi}+\frac{\partial \theta}{\partial x}\frac{\partial}{\partial \theta}$
Nella derivazione della formula link
Risposte
E' la regola della catena, la trovi in qualunque libro di analisi o su Wikipedia.
Paola
Paola
"prime_number":
E' la regola della catena
Ossia, il teorema di derivazione delle funzioni composte.
Ok, lo conosco. Ho $f(x,y,z)$. Con un cambiamento di variabili
$x=\rho sin \theta cos \varphi$
$y=\rho sin \theta sin \varphi$
$z=cos \theta$
$\rho=\rho(x,y,z)$
$\varphi=\varphi(x,y,z)$
$\theta=\theta(x,y,z)$
Diventa $f(\rho, \theta, \varphi)=f(\rho(x,y,z), \theta(x,y,z), \varphi(x,y,z))$? Allora
$\frac{\partial f}{\partial x}=\frac{\partial f}{\partial \rho}\frac{\partial \rho}{\partial x}+\frac{\partial f}{\partial \theta}\frac{\partial \theta}{\partial x}+\frac{\partial f}{\partial \varphi}\frac{\partial \varphi}{\partial x}$
$\frac{\partial }{\partial x}=\frac{\partial \rho}{\partial x}\frac{\partial }{\partial \rho}+\frac{\partial \theta}{\partial x}\frac{\partial }{\partial \theta}+\frac{\partial \varphi}{\partial x}\frac{\partial }{\partial \varphi}$
$x=\rho sin \theta cos \varphi$
$y=\rho sin \theta sin \varphi$
$z=cos \theta$
$\rho=\rho(x,y,z)$
$\varphi=\varphi(x,y,z)$
$\theta=\theta(x,y,z)$
Diventa $f(\rho, \theta, \varphi)=f(\rho(x,y,z), \theta(x,y,z), \varphi(x,y,z))$? Allora
$\frac{\partial f}{\partial x}=\frac{\partial f}{\partial \rho}\frac{\partial \rho}{\partial x}+\frac{\partial f}{\partial \theta}\frac{\partial \theta}{\partial x}+\frac{\partial f}{\partial \varphi}\frac{\partial \varphi}{\partial x}$
$\frac{\partial }{\partial x}=\frac{\partial \rho}{\partial x}\frac{\partial }{\partial \rho}+\frac{\partial \theta}{\partial x}\frac{\partial }{\partial \theta}+\frac{\partial \varphi}{\partial x}\frac{\partial }{\partial \varphi}$
Certo.