Esercizio convergenza totale serie di funzioni
Studiare la convergenza totale della serie di funzioni:
$sum_(n = 1)(sqrt(n+3)(x^2-2)^n)/(3^n+2n^2) = sum_(n = 1)f_n(x)$
Il mio problema è che non saprei come continuare dopo aver trovato il massimo di $f_n$.
$(df_n)/(dx) = sum_(n = 1)(nsqrt(n+3)(x^2-2)^(n-1)2x)/(3^n+2n^2) $
punti critici per $x=0, x=+-2$, risulta che $|f_n(x)| <= |f_n(0)| = M$, siccome $f_n(+-2)=0$.
cioè $M = |f_n(0)| = (2^nsqrt(n+3))/(3^n+2n^2)$
dopodiché non saprei come estrarre da $M$ una successione che converga e che maggiori $f_n(x)$.
Ho provato in vari modi il criterio del rapporto e della radice ma mi ritrovo sempre con il limite uguale a 1.
Qualche suggerimento?
$sum_(n = 1)(sqrt(n+3)(x^2-2)^n)/(3^n+2n^2) = sum_(n = 1)f_n(x)$
Il mio problema è che non saprei come continuare dopo aver trovato il massimo di $f_n$.
$(df_n)/(dx) = sum_(n = 1)(nsqrt(n+3)(x^2-2)^(n-1)2x)/(3^n+2n^2) $
punti critici per $x=0, x=+-2$, risulta che $|f_n(x)| <= |f_n(0)| = M$, siccome $f_n(+-2)=0$.
cioè $M = |f_n(0)| = (2^nsqrt(n+3))/(3^n+2n^2)$
dopodiché non saprei come estrarre da $M$ una successione che converga e che maggiori $f_n(x)$.
Ho provato in vari modi il criterio del rapporto e della radice ma mi ritrovo sempre con il limite uguale a 1.
Qualche suggerimento?
Risposte
Affidandomi ai conti per il massimo...
Prova a maggiorare così $(2^n\sqrt{n+3})/(3^n+2n^2)
Prova a maggiorare così $(2^n\sqrt{n+3})/(3^n+2n^2)
Grazie dan95, ho trovato anche
$(2^n\sqrt{n+3})/(3^n+2n^2)<=sqrt(n+3)(2/3)^n$
così da comprendere tutti gli indici, siccome il primo indice non rispetta la disuguaglianza nella tua maggiorazione.
$(2^n\sqrt{n+3})/(3^n+2n^2)<=sqrt(n+3)(2/3)^n$
così da comprendere tutti gli indici, siccome il primo indice non rispetta la disuguaglianza nella tua maggiorazione.
Ciao! Sono il tuo Tutor AI, il compagno ideale per uno studio interattivo. Utilizzo il metodo maieutico per affinare il tuo ragionamento e la comprensione. Insieme possiamo:
- Risolvere un problema di matematica
- Riassumere un testo
- Tradurre una frase
- E molto altro ancora...
Il Tutor AI di Skuola.net usa un modello AI di Chat GPT.
Per termini, condizioni e privacy, visita la relativa pagina.
Per termini, condizioni e privacy, visita la relativa pagina.