Dubbio su risoluzione limite tramite serie
Ciao! Ho un piccolo dubbio sulla risoluzione di un limite tramite il suo sviluppo in serie di MacLaurin (o taylor in 0)
$lim_(x->0) (1-cos(x))/(1+x-e^x)$
ovviamente lo svolgimento è questo:
$lim_(x->0) (x^2/(2!) -x^4/(4!) +x^6/(6!) +...) / (-x^2/(2!) -x^3/(3!) -x^4/(4!)-..)$
eliminando già 1 al numeratore e 1+x al denominatore grazie allo sviluppo in serie, ma poi non saprei come dividere i membri al numeratore con quelli del denominatore. Dubbio scemo ma essenziale.. qualcuno sa aiutarmi? Grazie
$lim_(x->0) (1-cos(x))/(1+x-e^x)$
ovviamente lo svolgimento è questo:
$lim_(x->0) (x^2/(2!) -x^4/(4!) +x^6/(6!) +...) / (-x^2/(2!) -x^3/(3!) -x^4/(4!)-..)$
eliminando già 1 al numeratore e 1+x al denominatore grazie allo sviluppo in serie, ma poi non saprei come dividere i membri al numeratore con quelli del denominatore. Dubbio scemo ma essenziale.. qualcuno sa aiutarmi? Grazie
Risposte
Al numeratore hai $\frac{x^{2}}{2} + o(x^{2})$, al denominatore hai $-\frac{x^{2}}{2} + o(x^{2})$, dunque il limite fa $-1$.
e gli altri termini non li considero?
Ti puoi fermare prima...
"bertuz":
e gli altri termini non li considero?
è proprio a questo che servono gli "o piccolo" quando calcoli i limiti mediante gli sviluppi
