Dominio integrale doppio ellisse

angelo.intile
Ciao ragazzi mi è venuto un dubbio, nel caso in cui il dominio di un integrale doppio generico fosse un ellisse, si può attuare la trasformazione in coordinate polari ? E' uguale al caso in cui il dominio è un cerchio ? O cambia qualcosa ? Martedì ho lo scritto di Analisi 2 e vorrei chiarismi tutti i dubbi :D

Risposte
angelo.intile
"TeM":
Dato il dominio \[ D := \left\{ (x,\,y) \in \mathbb{R}^2 : \frac{(x - x_c)^2}{a^2} + \frac{(y - y_c)^2}{b^2} \le 1 \right\} \] con \(a,\,b > 0\), una propria parametrizzazione è del tipo \[ \Phi : \begin{cases} x = x_c + a\,\rho\,\cos\theta \\ y = y_c + b\,\rho\,\sin\theta \end{cases} \; \; \; \text{per} \; (\rho, \, \theta) \in [0,\,1] \times [0,\,2\pi) \, , \] dove si ha \(J_{\Phi}(\rho,\,\theta) = a\,b\,\rho\). Tutto qui. ;)

Grazie mille :smt023

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.