Convergenza serie di funzioni
Per quanto riguarda la convergenza puntuale ed uniforme in $[0,\infty)$ della serie di funzioni
$\sum_{n=1}^\infty f_n=\sum_{n=1}^\infty\frac{x}{x^\alpha + n^2}$ con $\alpha>-0$, ho calcolato che $f_n^{\prime}=\frac{n^2 - x^\alpha(\alpha - 1)}{(x^\alpha + n^2)^2}$. Mi trovo che il punto $x=root(\alpha)(\frac{n^2}{\alpha - 1})=$ con $\alpha>-1$ è di massimo. Quindi $M_n=sup{{|f_n(x)|: x in[0,\infty) }}=f_n(b)=\frac{b}{b^\alpha +n^2}$ con $b=root(\alpha)(\frac{n^2}{\alpha - 1})$ è una serie numerica convergente e pertanto la serie $\sum_{n=1}^\infty \frac{x}{x^\alpha + n^2}$ è totalmente convergente e, quindi, uniformemente e puntualmente convergente in $[0,\infty)$ per $\alpha>-1$. C'è qualcuno che può dirmi se ho sbagliato? E per la convergenza tra 0 e 1, come procedo?
$\sum_{n=1}^\infty f_n=\sum_{n=1}^\infty\frac{x}{x^\alpha + n^2}$ con $\alpha>-0$, ho calcolato che $f_n^{\prime}=\frac{n^2 - x^\alpha(\alpha - 1)}{(x^\alpha + n^2)^2}$. Mi trovo che il punto $x=root(\alpha)(\frac{n^2}{\alpha - 1})=$ con $\alpha>-1$ è di massimo. Quindi $M_n=sup{{|f_n(x)|: x in[0,\infty) }}=f_n(b)=\frac{b}{b^\alpha +n^2}$ con $b=root(\alpha)(\frac{n^2}{\alpha - 1})$ è una serie numerica convergente e pertanto la serie $\sum_{n=1}^\infty \frac{x}{x^\alpha + n^2}$ è totalmente convergente e, quindi, uniformemente e puntualmente convergente in $[0,\infty)$ per $\alpha>-1$. C'è qualcuno che può dirmi se ho sbagliato? E per la convergenza tra 0 e 1, come procedo?
Risposte
Errata corrige$M_n=$ sup e la radice$\alpha$ riguarda anche il denominatore!