Complementi di Analisi Matematica

escucho
Salve a tutti ragazzi vorrei chiedervi delle delucidazioni sulla risoluzione di questo esercizio, non saprei proprio da dove iniziare:

Si calcoli la serie di Fourier della funzione

$f(x): = \{ (t, " se " 0 <= x <= 1), ( 2-t, " se " 1< x <= 2):} $

estesa per periodicità ad $ RR $ con periodo $2$.
Dire, motivando la risposta, se tale serie converge uniformemente a $f$ su $ RR $

Risposte
Quinzio
Puoi esprimere la funzione come $f(t)= t * [u(t) - u(t-1)] + (2-t)* [u(t-1) - u(t-2)]$
Dove $u(t)$ è il gradino unitario.
Non so se aiuta.

escucho
e poi come posso procedere?

gugo82
Hai studiato i teoremi di convergenza puntuale ed uniforme per le serie di Fourier?

Prova ad applicarli.

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.