Carattere serie a termini positivi
Studiare il carattere della seguente serie:
$ sum (1/n)^(1+1/n) $
Vorrei una vostra opinione sul procedimento che ho usato per risolvere questo quesito.
$ lim_(n -> +oo)(1/n)^(1+1/n)/(1/n) = lim_(n -> +oo)((1/n)(1/n)^(1/n))/(1/n) = lim_(n -> +oo)(1/n)^(1/n) = lim_(n -> +oo)e^(1/n log(1/n)) = e^(lim_(n -> +oo)1/n log(1/n)) $
Detta $x = 1/n$, per $n -> +oo$, $x -> 0^+$
$lim_(n -> +oo)1/n log(1/n) = lim_(x -> 0^+)xlogx = 0$ perché limite notevole. Quindi
$ lim_(n -> +oo)(1/n)^(1+1/n)/(1/n) = e^0 = 1 != 0$. Quindi, $ sum (1/n)^(1+1/n) $ e $sum 1/n$ hanno lo stesso carattere per il criterio del confronto asintotico. $sum 1/n = sum 1/n^1$ diverge perché serie armonica di termine generale $1/n^alpha$ con $alpha = 1 <= 1$, quindi $ sum (1/n)^(1+1/n) $ diverge.
Fatemi sapere se potete, grazie.
$ sum (1/n)^(1+1/n) $
Vorrei una vostra opinione sul procedimento che ho usato per risolvere questo quesito.
$ lim_(n -> +oo)(1/n)^(1+1/n)/(1/n) = lim_(n -> +oo)((1/n)(1/n)^(1/n))/(1/n) = lim_(n -> +oo)(1/n)^(1/n) = lim_(n -> +oo)e^(1/n log(1/n)) = e^(lim_(n -> +oo)1/n log(1/n)) $
Detta $x = 1/n$, per $n -> +oo$, $x -> 0^+$
$lim_(n -> +oo)1/n log(1/n) = lim_(x -> 0^+)xlogx = 0$ perché limite notevole. Quindi
$ lim_(n -> +oo)(1/n)^(1+1/n)/(1/n) = e^0 = 1 != 0$. Quindi, $ sum (1/n)^(1+1/n) $ e $sum 1/n$ hanno lo stesso carattere per il criterio del confronto asintotico. $sum 1/n = sum 1/n^1$ diverge perché serie armonica di termine generale $1/n^alpha$ con $alpha = 1 <= 1$, quindi $ sum (1/n)^(1+1/n) $ diverge.
Fatemi sapere se potete, grazie.
Risposte

ahahahhahahaha grande 
no dai sul serio... ti sembra davvero corretto procedere in questo modo?

no dai sul serio... ti sembra davvero corretto procedere in questo modo?
siccome non riuscivo a vedere l'asintoticità di tutta la serie ho cercato un'altro metodo (dove uso sempre l'asintoticità) in pratica
ho fatto:
$ 1+1/n = (n+1)/n ~ n/n = 1 => (1/n)^(1+1/n) ~ 1/n $ e blalala
è corretto questo passaggio?
ho fatto:
$ 1+1/n = (n+1)/n ~ n/n = 1 => (1/n)^(1+1/n) ~ 1/n $ e blalala
è corretto questo passaggio?
Sembra di sì, quindi secondo te, poiché $sum 1/n$ diverge, allora $sum (1/n)^(1+1/n)$ giusto?
All'università non ci hanno insegnato questo metodo, per questo non lo avrei mai usato. A te sembra corretto il mio ragionamento?
All'università non ci hanno insegnato questo metodo, per questo non lo avrei mai usato. A te sembra corretto il mio ragionamento?
"VincenzoPetrone":
ahahahhahahaha grande
no dai sul serio... ti sembra davvero corretto procedere in questo modo?
Era un modo carino per dire <

Altro modo: osservo che i termini della serie decrescono, quindi uso il criterio di Cauchy:
$\sum_{n=1}^{+oo} (1/n)^{1+1/n}$ ha lo stesso comportamento di $\sum_{k=0}^{+oo} 2^k (1/{2^k})^{1+1/{2^k}}=\sum_{k=0}^{+oo} 2^{-k/{2^k}}$, che diverge perché i termini non tendono a $0$.
$\sum_{n=1}^{+oo} (1/n)^{1+1/n}$ ha lo stesso comportamento di $\sum_{k=0}^{+oo} 2^k (1/{2^k})^{1+1/{2^k}}=\sum_{k=0}^{+oo} 2^{-k/{2^k}}$, che diverge perché i termini non tendono a $0$.