Calcola il seguente limite
$lim_{x to 0} ((1- cos (x^2/(x+1)))/(ln^2((x^2+x+1)/(x+1)))*(e^(sin x)-1)/(3x))$
Risposte
con qualche semplice artificio bisogna ricondursi al calcolo dei seguenti limiti notevoli
$ lim_(z -> 0) (1-cosz)/z^2 $
$ lim_(z -> 0) (e^z-1)/z $
$ lim_(z -> 0) (ln(1+z))/z $
$ lim_(z -> 0) (1-cosz)/z^2 $
$ lim_(z -> 0) (e^z-1)/z $
$ lim_(z -> 0) (ln(1+z))/z $
Se non ho sbagliato i conti, il limite vale $1/6$ :
$1 - cos(x^2/(1+x))$ \( \sim \) $ 1/2 * (x^2/(1+x))^2$ per $x->0$
$ln^2( (x^2 + x + 1)/(x+1) ) = ln^2(1 + x^2/(1+x))$ \( \sim \) $ (x^2/(1+x))^2$ per $x->0$
$e^(sin(x)) - 1$ \( \sim \) $sin(x)$ \( \sim \) $x$ per $x->0$
Quindi $ lim_{x to 0} ((1- cos (x^2/(x+1)))/(ln^2((x^2+x+1)/(x+1)))*(e^(sin x)-1)/(3x)) = 1/2 lim_{x->0} (x^2/(1+x))^2/((x^2/(1+x))^2) * x/(3x) = 1/6$
Analogamente, utilizzando l'algebra, si ha:
$lim_{x to 0} ((1- cos (x^2/(x+1)))/(ln^2((x^2+x+1)/(x+1)))*(e^(sin x)-1)/(3x)) = lim_{x to 0} ((1- cos (x^2/(x+1)))/(x^2/(x+1))^2 * (x^2/(x+1))^2/(ln^2(1 + x^2/(x+1)))*(e^(sin x)-1)/sin(x) * sin(x)/(3x)) = 1/2 * 1 * 1* 1/3 = 1/6$
Ciao
$1 - cos(x^2/(1+x))$ \( \sim \) $ 1/2 * (x^2/(1+x))^2$ per $x->0$
$ln^2( (x^2 + x + 1)/(x+1) ) = ln^2(1 + x^2/(1+x))$ \( \sim \) $ (x^2/(1+x))^2$ per $x->0$
$e^(sin(x)) - 1$ \( \sim \) $sin(x)$ \( \sim \) $x$ per $x->0$
Quindi $ lim_{x to 0} ((1- cos (x^2/(x+1)))/(ln^2((x^2+x+1)/(x+1)))*(e^(sin x)-1)/(3x)) = 1/2 lim_{x->0} (x^2/(1+x))^2/((x^2/(1+x))^2) * x/(3x) = 1/6$
Analogamente, utilizzando l'algebra, si ha:
$lim_{x to 0} ((1- cos (x^2/(x+1)))/(ln^2((x^2+x+1)/(x+1)))*(e^(sin x)-1)/(3x)) = lim_{x to 0} ((1- cos (x^2/(x+1)))/(x^2/(x+1))^2 * (x^2/(x+1))^2/(ln^2(1 + x^2/(x+1)))*(e^(sin x)-1)/sin(x) * sin(x)/(3x)) = 1/2 * 1 * 1* 1/3 = 1/6$
Ciao

Perfetto, grazie.