Binomio di Newton
Buongiorno,
leggendo su due libri diversi di analisi, ho notato questa differenza sulla formula di binomio di Newton, cioè :
1 \(\displaystyle (a+b)^n= \sum_{k=0}^n \binom{n}{k} a^kb^{n-k} \)
2 \(\displaystyle (a+b)^n= \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k \)
certamente portano allo stesso risultato, ma il mio problema e che voglio dimostrare il numero di Nepero, è sul mio libro usa la 1.
Cioè come fa ad arrivare a questa :
\(\displaystyle (1+\tfrac{1}{n})^n= \sum_{k=0}^n \binom{n}{k} \tfrac{1}{n^k}\) cioè se usa la 2, mi viene facile, procedo nel seguente modo:
\(\displaystyle a^{n-k}=1^{n-k}=1 \)
\(\displaystyle b^k=\tfrac{1^k}{n^k}=\tfrac{1}{n^k} \)
cioè,
\(\displaystyle a^{n-k}b^k=1^{n-k}\tfrac{1^k}{n^k}=1\tfrac{1}{n^k}=\tfrac{1}{n^k}\).
Grazie
Cordiali saluti.
leggendo su due libri diversi di analisi, ho notato questa differenza sulla formula di binomio di Newton, cioè :
1 \(\displaystyle (a+b)^n= \sum_{k=0}^n \binom{n}{k} a^kb^{n-k} \)
2 \(\displaystyle (a+b)^n= \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k \)
certamente portano allo stesso risultato, ma il mio problema e che voglio dimostrare il numero di Nepero, è sul mio libro usa la 1.
Cioè come fa ad arrivare a questa :
\(\displaystyle (1+\tfrac{1}{n})^n= \sum_{k=0}^n \binom{n}{k} \tfrac{1}{n^k}\) cioè se usa la 2, mi viene facile, procedo nel seguente modo:
\(\displaystyle a^{n-k}=1^{n-k}=1 \)
\(\displaystyle b^k=\tfrac{1^k}{n^k}=\tfrac{1}{n^k} \)
cioè,
\(\displaystyle a^{n-k}b^k=1^{n-k}\tfrac{1^k}{n^k}=1\tfrac{1}{n^k}=\tfrac{1}{n^k}\).
Grazie
Cordiali saluti.
Risposte
Le due forme sono del tutto equivalenti: puoi usare quella che ti è più gradita. Tieni conto che la proprietà commutativa vale anche nel primo membro: che differenza c'è fra $ (1+1/n)^n $ e $ (1/n+1)^n $?
Ciao
Ciao
Ciao,
non c'è nessuna differenza !! quindi si ha:
\(\displaystyle (1+\tfrac{1}{n})^n=(\tfrac{1}{n}+1)^n \to \sum_{k=0}^n \binom{n}{k}\tfrac{1}{n^{n-k}{}}=\sum_{k=0}^n\binom{n}{k} \tfrac{1}{n^k} \)
giusto ?
cordiali saluti
"orsoulx":
che differenza c'è fra $ (1+1/n)^n $ e $ (1/n+1)^n $?
non c'è nessuna differenza !! quindi si ha:
\(\displaystyle (1+\tfrac{1}{n})^n=(\tfrac{1}{n}+1)^n \to \sum_{k=0}^n \binom{n}{k}\tfrac{1}{n^{n-k}{}}=\sum_{k=0}^n\binom{n}{k} \tfrac{1}{n^k} \)
giusto ?
cordiali saluti

D'altronde si ha:
[tex]\binom{n}{k} = \binom{n}{n - k}[/tex]
Si si.... giustissimo
grazie per l'osservazione


grazie per l'osservazione