AL VOLO........
1/cosh(x) e' una funzione pari o sbaglio?
Risposte
Non sbagli

è $cosh\ x\ =\ 2/(e^x+e^-x)$
pertanto, sviluppando la funzione in serie (per x = 1) si ricava:
$2/((1+1+1/2+1/6+1/24+1/120+..+1/n!)+1/(1+1+1/2+1/6+1/24+..+1/n!))\ =$
$2/((2(1+1+1/2+1/6+1/24+1/120+..+1/n!)+1/2(1+1+1/2+1/6+1/24+1/120+..+1/n!)+1/6(1+1+1/2+1/6+1/24+1/120+..+1/n!)+..+1/n!(1+1+1/2+1/6+1/24+1/120+..+1/n!))/(1+1+1/2+1/6+1/24+1/120+..+1/n!))\ =$
$(2*(1+1+1/2+1/6+1/24+1/120+..+1/n!))/((2(1+1+1/2+1/6+1/24+1/120+..+1/n!)+1/2(1+1+1/2+1/6+1/24+1/120+..+1/n!)+1/6(1+1+1/2+1/6+1/24+1/120+..+1/n!)+..+1/n!(1+1+1/2+1/6+1/24+1/120+..+1/n!))$, ovvero:
$2/(2+1/2+1/6+..+1/n!)$, cioè: $2e^-x$, che è, evidentemente, PARI.
pertanto, sviluppando la funzione in serie (per x = 1) si ricava:
$2/((1+1+1/2+1/6+1/24+1/120+..+1/n!)+1/(1+1+1/2+1/6+1/24+..+1/n!))\ =$
$2/((2(1+1+1/2+1/6+1/24+1/120+..+1/n!)+1/2(1+1+1/2+1/6+1/24+1/120+..+1/n!)+1/6(1+1+1/2+1/6+1/24+1/120+..+1/n!)+..+1/n!(1+1+1/2+1/6+1/24+1/120+..+1/n!))/(1+1+1/2+1/6+1/24+1/120+..+1/n!))\ =$
$(2*(1+1+1/2+1/6+1/24+1/120+..+1/n!))/((2(1+1+1/2+1/6+1/24+1/120+..+1/n!)+1/2(1+1+1/2+1/6+1/24+1/120+..+1/n!)+1/6(1+1+1/2+1/6+1/24+1/120+..+1/n!)+..+1/n!(1+1+1/2+1/6+1/24+1/120+..+1/n!))$, ovvero:
$2/(2+1/2+1/6+..+1/n!)$, cioè: $2e^-x$, che è, evidentemente, PARI.
"IvanTerr":
è $cosh\ x\ =\ 2/(e^x+e^-x)$
pertanto, sviluppando la funzione in serie (per x = 1) si ricava:
$2/((1+1+1/2+1/6+1/24+1/120+..+1/n!)+1/(1+1+1/2+1/6+1/24+..+1/n!))\ =$
$2/((2(1+1+1/2+1/6+1/24+1/120+..+1/n!)+1/2(1+1+1/2+1/6+1/24+1/120+..+1/n!)+1/6(1+1+1/2+1/6+1/24+1/120+..+1/n!)+..+1/n!(1+1+1/2+1/6+1/24+1/120+..+1/n!))/(1+1+1/2+1/6+1/24+1/120+..+1/n!))\ =$
$(2*(1+1+1/2+1/6+1/24+1/120+..+1/n!))/((2(1+1+1/2+1/6+1/24+1/120+..+1/n!)+1/2(1+1+1/2+1/6+1/24+1/120+..+1/n!)+1/6(1+1+1/2+1/6+1/24+1/120+..+1/n!)+..+1/n!(1+1+1/2+1/6+1/24+1/120+..+1/n!))$, ovvero:
$2/(2+1/2+1/6+..+1/n!)$, cioè: $2e^-x$, che è, evidentemente, PARI.
Cheeeeee??

Quello che hai scritto è molto artistico, ma fatico a trovarci un senso...
Mi è venuto un colpo quando l'ho visto....
Forse è meglio far vedere con la definizione che $cosh x $ è pari e quindo lo è anche la funzione $1/(coshx ) $ .
$cosh x = (e^x+e^(-x))/2 $.
Verifico che $cosh(-x) = cosh x .$
Infatti $cosh(-x) = ( e^(-x)+e^x)/2 = cosh x$.
$cosh x = (e^x+e^(-x))/2 $.
Verifico che $cosh(-x) = cosh x .$
Infatti $cosh(-x) = ( e^(-x)+e^x)/2 = cosh x$.