Generatore di numeri primi
Generatore di numeri primi
Inserendo al posto di p un numero primo nella forma 12*x+5
se per m=0 oppure n=0 questa ammette soluzioni intere
allora P è primo
$(p+1)/2+24*m*n+6*m+6*n+1=(2*(3*m+n+1))^2$
,
$24*m*n+6*m+6*n+1=3*(3*P-3)/6+1$
Inserendo al posto di p un numero primo nella forma 12*x+5
se per m=0 oppure n=0 questa ammette soluzioni intere
allora P è primo
$(p+1)/2+24*m*n+6*m+6*n+1=(2*(3*m+n+1))^2$
,
$24*m*n+6*m+6*n+1=3*(3*P-3)/6+1$