Elementi Invertibili (Please!!!)

Empty Head
Ciao

Ho un "bisogno disperato" di capire come si trovano gli elementi invertibili in questi esercizi.

A) Quali sono gli elementi invertibili rispetto al prodotto in Q[x]?
B) Quali sono gli elementi invertibili rispetto al prodotto in Z7[x]?

Q[x] e Z7[x] sono gli anelli polinomi a coefficienti nei relativi campi.

Grazie

Risposte
irenze
Invertibili o irriducibili?!?

irenze
Perchè per l'invertibilità la cosa è abbastanza ovvia:
dato un anello A, a$\in$A è invertibile se e solo se esiste b$\in$B tale che ab=1.

Quindi, prendendo A=K[x] (con K campo), p(x)q(x)=1 (unità di K=unità di K[x]) implica grado(p)=grado(q)=0 e p,q$\ne$0 (gli elementi invertibili sono tutti e soli i polinomi costanti diversi da 0)

Sk_Anonymous
"irenze":
Invertibili o irriducibili?!?

Che razza di domanda l'è? Sapresti tu forse - ad esempio! - descrivere in modo non tautologico l'insieme dei polinomi irriducibili di $\mathbb{Q}[x]$? Ehmmm... :shock:

Empty Head
Correggetemi se sbaglio :

> in Q[x] gli elementi invertibili rispetto al prodotto sono tutti i polinomi di grado 0 con termine noto diverso da 0
> stesso discorso vale per Z[x].
> in Z7[x] esplicitamente {1,2,3,4,5,6}

due domande :

1) elementi invertibili rispetto al prodotto in C (complessi) ?

"in teoria dovrebbero essere tutti i numeri complessi z con z diverso da 0"

2) elementi invertibili in Z3[x] / f dove f = (x^2 + 1) € Z3[x] ?

ficus2002
"Empty Head":
2) elementi invertibili in Z3[x] / f dove f = (x^2 + 1) € Z3[x] ?


Tutti i polinomi non nulli di $(ZZ_3[x]) / f$ dove $f = x^2 + 1 in ZZ_3[x]$ sono invertibili perchè $f$ è irriducibile in $ZZ_3[x]$

irenze
@DavidHilbert: Qual è il problema, scusa?
I polinomi irriducibili in Q[x] sono quelli di grado 1 e quelli di grado 2 con discriminante negativo.
A me questa descrizione non sembra tautologica (per me la definizione di irriducibile è in un anello qualsiasi), comunque non più di quella degli elementi invertibili.

Principe2
Irenze, ti sbagli... la tua caratterizzazione va bene in R[x], ma non in Q[x]. Prendi ad esempio $x^4+2$ è irriducibile su Q, ma ha grado 4.. Non è nota una descrizione non tautologica degli irriducibili in Q[x]...

irenze
Hai ragione, ci avevo già pensato da sola... scusate tutti...

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.