Successione di naturali
Siano $a,b$ due numeri irrazionali positivi tali che $1/a+1/b=1$, consideriamo i due insiemi
$A={[an]}_{n \in \mathbb{N}}$
$B={[bn]}_{n \in \mathbb{N}}$
dove $[x]$ denota la parte intera (inferiore) di $x$. Mostrare che $A uu B=\mathbb{N}$ e $A nn B={0}$
$A={[an]}_{n \in \mathbb{N}}$
$B={[bn]}_{n \in \mathbb{N}}$
dove $[x]$ denota la parte intera (inferiore) di $x$. Mostrare che $A uu B=\mathbb{N}$ e $A nn B={0}$
Risposte
Cordialmente, Alex
Scavando fra i ricordi:
Ciao
Ehi dan, ma è giusta o no?
Ci hai abbandonato …
Cordialmente, Alex

Ci hai abbandonato …

Cordialmente, Alex