Problemino..

clarkk
Questo problema nn mi viene in mente come impostarlo, sto provando in tutti i modi...probabilmente è semplice: :oops:
in un triangolo rettangolo l'ipotenusa è $a$ e il raggio della circonferenza inscritta misura $(sqrt3-1)/4 *a$ . Chiede le ampiezze degli angoli. Lo devo risolvere con la trigonometria (solo nei triangoli rettangoli...) boh :S

Risposte
G.D.5
Mmmmm....



Il centro $O$ della circonferenza inscritta si trova sull'intersezione delle bisettrici degli angoli interni del triangolo rettangolo $ABC$. Il triangolo $ADO$ presenta dunque l'angolo in $A$ ($hat{DAO}$) di $45°$; essendo $OD=(sqrt(3) - 1)/4 * a$ il triangolo è risolvibile.

Posto $DB=x$ e $FB=y$ ed essendo noto che $BC=a$ si applica il teorema di Pitagora, con $AB=AD+x$ e $AC=AF+y$ e $AF=AD$ noto per mezzo del punto di cui sopra in oggetto. Tenendo conto che $DB=BE$ e $FC=EC$ e $BE+EC=DB+FC=a$ si ottiene un sistema, sicuramente risolvibile.

Noti i tre lati il triangolo è risolvibile.

In tutto questo si applica la trigonometria solo al triangolo rettangolo $ADO$ e al triangolo rettangolo $ABC$, come da richiesta.

Il tutto, ovviamente, a meno di probabilisimi errori.

clarkk
Grazie!

G.D.5
Figurati, e di che.

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.