Problemi di Matematica (124266)
1.Per il punto medio M di una corda AB si conduce il diametro CD. Se AE è il diametro passante per A, dimostrare che BE è parallela a CD.
2.Per gli estremi di un diametro AB di una circonferenza di centro O, si conducano le rette tangenti a e b. Una terza tangente interseca a e b rispettivamente nei punti C e D. Dimostra che CO^D è retto
3.Nel trapezio rettangolo ABCD la proiezione CH del lato obliquo sulla base maggiore misura 9 cm e la somma delle basi AB e CD supera di 5 cm il triplo dell’altezza BH (AD); si sa inoltre che i 4/5 della base maggiore CD superano di 8 cm l’altezza. Determinare il perimetro e la superficie.
Grazie.
2.Per gli estremi di un diametro AB di una circonferenza di centro O, si conducano le rette tangenti a e b. Una terza tangente interseca a e b rispettivamente nei punti C e D. Dimostra che CO^D è retto
3.Nel trapezio rettangolo ABCD la proiezione CH del lato obliquo sulla base maggiore misura 9 cm e la somma delle basi AB e CD supera di 5 cm il triplo dell’altezza BH (AD); si sa inoltre che i 4/5 della base maggiore CD superano di 8 cm l’altezza. Determinare il perimetro e la superficie.
Grazie.
Risposte
Ciao!
Posta un tuo tentativo, come da regolamento.
Posta un tuo tentativo, come da regolamento.
Non ho proprio capito come farli :(
Ma soprattutto, io vorrei capire una cosa: con quale metodo devi risolverli? Geometria sintetica? Geometria analitica? Proiettiva? Differenziale? Algebrica? Ma perché non scrivete cosa diavolo state studiando e quali sono gli argomenti, quando piazzate i testi dei problemi?
Come non quotarti, ciampax. Penso però si tratti di geometria euclidea e che nel terzo si abbia l'applicazione alla geometria piana, con l'utilizzo dei sistemi lineari e con l'interpretazione algebrica dei teoremi di Euclide e Pitagora.