Funzione cotangente
Data la funzione y=ctg(bx) esprimi, in funzione di a e b diversi da zero, il periodo e gli asintoti paralleli all'asse y. Determina la funzione di periodo 2π (π=pigreco), passante per (3π/2;-1) e con $b>0$
Mi calcolo il periodo:$π/t=π/b$
gli asintoti dovrebbero essere $x=+-π/b$
per calcolare la funzione di periodo $2π=π/b$ quindi $b=1/2$
e sapendo b sostituisco nella funzione le coordinate alla x e alla y e mi trovo a
alla fine mi viene $a=1$ e quindi
$y=ctg(x/2)$
Ho fatto bene???
Mi calcolo il periodo:$π/t=π/b$
gli asintoti dovrebbero essere $x=+-π/b$
per calcolare la funzione di periodo $2π=π/b$ quindi $b=1/2$
e sapendo b sostituisco nella funzione le coordinate alla x e alla y e mi trovo a
alla fine mi viene $a=1$ e quindi
$y=ctg(x/2)$
Ho fatto bene???
Risposte
Sì se il testo iniziale è $y=a ctg(bx)$ e non quello che hai scritto. L'unico appunto è sugli asintoti che sono $x=+-k pi/b$ con $k in ZZ$