Equazioni 2° grado a due incognite

Incognita X
Buongiorno.

Parlando con un mio amico è sorto il problema: come si risolvono le equazioni di secondo grado a due incognite? (Sicuramente starete pensando: ma non avevate niente di meglio di cui parlare? Beh, in effetti...). Comunque, poiché molto probabilmente la formuletta per risolvere le equazioni di secondo grado a una incognita non è più utile, esiste un metodo generale per risolverle?

Grazie.

Risposte
G.D.5
Le equazioni di secondo grado in due incognite si comportano esattamente come le equazioni lineari in due incognite, i.e. fissata la $y$ risolvi rispetto a $x$ o viceversa.
Le equazioni di secondo grado in due incognite rappresentano le coniche, così come le equazioni lineari in due incognite rappresentano le rette: questo dovrebbe farti capire il perché della mia precendete risposta.

Incognita X
Sì, in effetti rappresentano una parabola... ma per risolverle? Assegno valori casuali alla X? Perché mi sembra che le soluzioni siano infinite...

@melia
Le equazioni di primo grado in due incognite ammettono infinite soluzioni che, nel piano, graficamente rappresentano da una retta.
Le equazioni di secondo grado in due incognite sono un po' più complicate, alcune non ammettono soluzioni reali come $x^2+xy+y^2+4=0$, altre ammettono solo una soluzione $x^2+y^2=0$, altre sono semplicemente delle rette cammuffate come $x^2+4xy+4y^2-9=0$ che non è altro che il prodotto tra due rette $(x+2y+3)*(x+2y-3)=0$.
Le equazioni di secondo grado in due incognite hanno come equazione generale $ax^2+bxy+cy^2+dx+ey+f=0$ e si chiamano coniche, quelle che ho descritto sopra sono delle coniche degeneri, le altre coniche sono parabola, iperbole, ellisse e circonferenza che è un caso particolare di ellisse.
Nel sito trovi diverse cose dedicate alle coniche, compresa una bella animazione sul come ottenerle tramite le sezioni di un cono
https://www.matematicamente.it/didattica ... 804083031/

G.D.5
Rappresentano delle coniche, non necessariamente le coniche sono parabole: potrebbero essere ellisse, iperbole, circonferenze oltre che parabole. Tutto dipende dal discriminante della quadratica (l'espressione con $x$ e $y$).
Le soluzioni sono infinite: tutte le coppie $(x,y)$ che rappresentano punti delle conica sono soluzione delle singola equazione.
Se vuoi un numero finito di soluzioni devi mettere a sistema due equazioni: devi cioè trovare le intersezioni tra due coniche.

Incognita X
Sì, ok, questo l'ho capito... prendi un cono ed un coltello... lo tagli in modo parallelo alla base ed ottieni una circonferenza, lo tagli in modo impreciso ed ottieni una ellisse e se tagli tutto, compresa una parte di base ottieni una parabola...

Le equazioni di secondo grado dovrabbero avere sempre delle soluzioni (o nel campo dei reali o dei complessi)... il problema è sorto quando mi stato chiesto... "come si risolvono tali equazioni?"... Io ho risposto: "assegna dei valori alla variabile indipendente e trovi dei valori della variabile dipendente e successivamente disegna i tuoi punti sul piano e uniscili"... ma la risposta mi è sembrata piuttosto incompleta e non molto corretta...

Le equ.ni di secondo grado in due incognite sono "sempre" delle coniche?

@melia
"xshell":

Le equ.ni di secondo grado in due incognite sono "sempre" delle coniche?

vedi la mia risposta precedente

Incognita X
Grazie.

franced
"@melia":
Le equazioni di primo grado in due incognite ammettono infinite soluzioni che, nel piano, graficamente rappresentano da una retta.
Le equazioni di secondo grado in due incognite sono un po' più complicate, alcune non ammettono soluzioni reali come $x^2+xy+y^2+4=0$, altre ammettono solo una soluzione $x^2+y^2=0$, altre sono semplicemente delle rette cammuffate come $x^2+4xy+4y^2-9=0$ che non è altro che il prodotto tra due rette $(x+2y+3)*(x+2y-3)=0$.
Le equazioni di secondo grado in due incognite hanno come equazione generale $ax^2+bxy+cy^2+dx+ey+f=0$ e si chiamano coniche, quelle che ho descritto sopra sono delle coniche degeneri, le altre coniche sono parabola, iperbole, ellisse e circonferenza che è un caso particolare di ellisse.
Nel sito trovi diverse cose dedicate alle coniche, compresa una bella animazione sul come ottenerle tramite le sezioni di un cono
https://www.matematicamente.it/didattica ... 804083031/


La conica $x^2+xy+y^2+4=0$ è non degenere.
E' un'ellisse immaginaria.

franced
Il fatto che una conica non abbia punti reali non significa che sia per forza degenere.

Una conica è degenere quando la matrice della conica è singolare.

Fioravante Patrone1
Alla maestrina dalla penna rossa faccio notare che @melia stava ovviamente parlando del piano "reale". I numeri complessi sono stati tirati in ballo in un post successivo di xshell. Nel piano reale non ci sono coniche immaginarie e nessuno è obbligato a passare per forza ai numeri complessi. Non lo prescrive il dottore.

Se l'uso del termine "degenere" può ritenersi comunque non appropriato, un approccio meno schematico come quello usato da @melia lo trovo estremamente adeguato al contesto di questo thread.

franced
La risposta sarebbe per me?

Io volevo solamente ricordare quando una conica è degenere.. tutto qua.
Non mi sembra di aver detto cose sbagliate.

@melia
D'accordo, mi sono espresa male, principalmente non ho tenuto conto di avere scritto anche l'equazione di un ellisse complesso, ma le altre due $x^2+y^2=0$, $x^2+4xy+4y^2-9=0$ sono coniche degeneri.
Dopo tutto la spiegazione mi sembrava adeguata a xshell, studente svizzero di quarta media, una classe equivalente alla nostra prima superiore.

Incognita X
Ok, grazie a tutti. Non litigate però.

"@melia":
Dopo tutto la spiegazione mi sembrava adeguata a xshell, studente svizzero di quarta media, una classe equivalente alla nostra prima superiore.


Ehm... è una battuta? :shock:

@melia
"xshell":

Ehm... è una battuta? :shock:

No :oops: , ti ho scambiato per schoggi, che mi faceva domande dello stesso tono su Medie e che abbiamo consigliato di postare su Superiori.
Chiedo umilmente perdono #-o

Incognita X
Niente, scusami tu, ma non avevo capito.

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.