Equazione goniometrica con radicali

simos93
Devo risolvere un'equazione goniometrica ma non so come andare avanti.

$sqrt(senx)+sqrt(1-tgx)=0$

ho portato la seconda radice al secondo membro ed ho elevato al quadrato. Dopo di che giungo a $senx+tgx-1=0$. E adesso?

Risposte
Sk_Anonymous
Nel dominio, è una somma di quantità non negative.

simos93
Ehm..tradotto?

Sk_Anonymous
Le equazioni irrazionali vanno trattate con cautela. A patto che la radice esista, cioè quando il radicando è non negativo, per convenzione si estrae sempre la radice non negativa. In questo esercizio, separare i due membri ed elevare al quadrato, è la cosa peggiore che tu possa fare.

simos93
quindi basta che pongo i radicandi maggiori di 0?

Gi81
$sqrt(sin(x))>=0$ e $sqrt(tg(x)-1)>=0$ (questo nelle $x$ del dominio)
Dato che $sin(x)$ e $tg(x)-1$ non si annullano mai contemporaneamente,
$sqrt(senx)+sqrt(1-tgx)$ sarà sempre un numero positivo

Sk_Anonymous
Il dominio si ottiene risolvendo il seguente sistema:

$\{(senx>=0),(1-tgx>=0):}$

Ma se sei interessato alle soluzioni dell'equazione, per le considerazioni precedenti, gli unici valori dovrebbero essere quelli che annullano contemporaneamente i due radicandi. Si vede facilmente che tali valori non esistono.

simos93
Ok ho capito. Grazie mille!

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.