Due teoremi di geometria
Mi aiutate con questi teoremi?
1. Disegna tre semirette Oa, Ob e Oc, in modo da formare tre angoli congruenti. prolunga una delle tre semirette. Dimostra che tale prolungamento è la bisettrice dell'angolo formato dalle altre due semirette.
2. Le bisettrici Os e Ot dei due angoli consecutivi aOb e bOc sono perpendicolari. Disegna gli angoli e dimostra che due punti qualsiasi, presi rispettivamente uno su Oa e uno su Oc, sono allineati con O.
per favore, è urgentissimo!
1. Disegna tre semirette Oa, Ob e Oc, in modo da formare tre angoli congruenti. prolunga una delle tre semirette. Dimostra che tale prolungamento è la bisettrice dell'angolo formato dalle altre due semirette.
2. Le bisettrici Os e Ot dei due angoli consecutivi aOb e bOc sono perpendicolari. Disegna gli angoli e dimostra che due punti qualsiasi, presi rispettivamente uno su Oa e uno su Oc, sono allineati con O.
per favore, è urgentissimo!
Risposte
1)
Chiamando Oa' il prolungamento di Oa, abbiamo
Ipotesi
Angolo aOb = Angolo bOc = Angolo cOB
Angolo a'Oa = 180° (per costruzione)
Tesi
semiretta Oa' bisettrice dell'angolo bOc (Angolo a'Ob = Angolo a'Oc)
Quindi avremo:
Angolo a'Oa = Angolo aOb + Angolo a'Ob = Angolo aOc + Angolo a'Oc
ma per ipotesi
Angolo aOb = Angolo aOc = Angolo bOc
e
Angolo a'Oa = 180°
di conseguenza possiamo scrivere
180° = Angolo aOb + Angolo a'Ob = Angolo aOb + Angolo a'Oc
da cui segue che gli angoli a'Ob e a'Oc sono forzatamente uguali in quanto sommati all'angolo aOb danno entrambi l'angolo a'Oa = 180°, quindi la semiretta Oa' è bisettrice dell'angolo bOc...
...c.v.d.
... adesso un attimo e ti guardo il secondo.
Aggiunto 26 minuti più tardi:
2)
Abbiamo:
Ipotesi
Angolo sOt = 90°
Semiretta Os bisettrice angolo aOb (angolo aOs = angolo sOb)
Semiretta Ot bisettrice angolo bOc (angolo bOt = angolo tOc)
Tesi
Semiretta oC prolungamento della semiretta Oa (angolo aOc = 180°)
Quindi avremo:
angolo aOc = angolo aOb + angolo bOc = angolo aOs + angolo sOb + angolo bOt + angolo tOc
ma
angolo sOb + angolo bOt = angolo sOt
e
angolo sOt = 90° (per ipotesi)
di conseguenza
angolo aOc = angolo aOs + 90° + angolo tOc
ma se per ipotesi
angolo aOs = angolo sOb
angolo bOt = angolo tOc
avremo che anche
angolo aOs + angolo tOc = angolo sOb + angolo bOt = 90°
quindi, in definitiva otteniamo
angolo aOc = 90° + 90° = 180°
le due semirette Oa e Oc sono una il prolungamento dell'altra...
... c.v.d.
:hi
Massimiliano
Chiamando Oa' il prolungamento di Oa, abbiamo
Ipotesi
Angolo aOb = Angolo bOc = Angolo cOB
Angolo a'Oa = 180° (per costruzione)
Tesi
semiretta Oa' bisettrice dell'angolo bOc (Angolo a'Ob = Angolo a'Oc)
Quindi avremo:
Angolo a'Oa = Angolo aOb + Angolo a'Ob = Angolo aOc + Angolo a'Oc
ma per ipotesi
Angolo aOb = Angolo aOc = Angolo bOc
e
Angolo a'Oa = 180°
di conseguenza possiamo scrivere
180° = Angolo aOb + Angolo a'Ob = Angolo aOb + Angolo a'Oc
da cui segue che gli angoli a'Ob e a'Oc sono forzatamente uguali in quanto sommati all'angolo aOb danno entrambi l'angolo a'Oa = 180°, quindi la semiretta Oa' è bisettrice dell'angolo bOc...
...c.v.d.
... adesso un attimo e ti guardo il secondo.
Aggiunto 26 minuti più tardi:
2)
Abbiamo:
Ipotesi
Angolo sOt = 90°
Semiretta Os bisettrice angolo aOb (angolo aOs = angolo sOb)
Semiretta Ot bisettrice angolo bOc (angolo bOt = angolo tOc)
Tesi
Semiretta oC prolungamento della semiretta Oa (angolo aOc = 180°)
Quindi avremo:
angolo aOc = angolo aOb + angolo bOc = angolo aOs + angolo sOb + angolo bOt + angolo tOc
ma
angolo sOb + angolo bOt = angolo sOt
e
angolo sOt = 90° (per ipotesi)
di conseguenza
angolo aOc = angolo aOs + 90° + angolo tOc
ma se per ipotesi
angolo aOs = angolo sOb
angolo bOt = angolo tOc
avremo che anche
angolo aOs + angolo tOc = angolo sOb + angolo bOt = 90°
quindi, in definitiva otteniamo
angolo aOc = 90° + 90° = 180°
le due semirette Oa e Oc sono una il prolungamento dell'altra...
... c.v.d.
:hi
Massimiliano