Come si fanno le proporzioni con le frazioni?

Andrea.A93
(2/5 - x) : x = 1/3 : 1/5

Risposte
Smath
Ciao, il procedimento è lo stesso che con una normale proporzione senza frazioni.. quindi:
(2/5 - x) : x = 1/3 : 1/5
ricavo la x:
x = 3/5 * (2/5 - x )
da cui:
x = 6/25 - (3/5)*x
(8/5)*x = 6/25
quindi
x = (3/20)

In realtà le proporzioni possiedono delle interessanti proprietà
che andrebbero studiate!! Infatti, data la seguente proporzione:

[math]\left(\frac{2}{5} - x\right) : x = \frac{1}{3} : \frac{1}{5}\\[/math]

per la nota proprietà del comporre, segue che

[math]\left[\left(\frac{2}{5} - x\right)+x\right] : x = \left(\frac{1}{3} + \frac{1}{5}\right) : \frac{1}{5}\\[/math]

che semplificata porge

[math]\frac{2}{5} : x = \frac{8}{15} : \frac{1}{5} \; . \\[/math]

In conclusione, grazie alla proprietà fondamentale secondo cui il prodotto
dei medi è uguale al prodotto degli estremi
, si ottiene quanto desiderato:

[math]x\,\frac{8}{15} = \frac{2}{5}\,\frac{1}{5} \; \; \Leftrightarrow \; \; x = \frac{3}{20} \; .\\[/math]


Spero sia sufficientemente chiaro. ;)

Questa discussione è stata chiusa